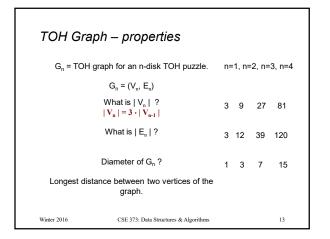
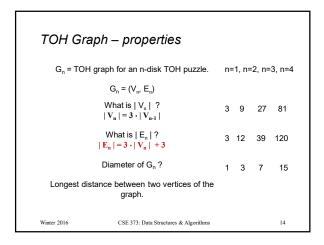
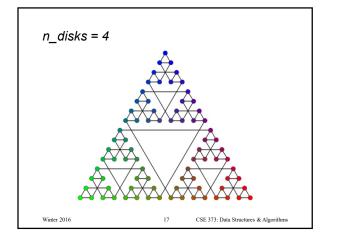


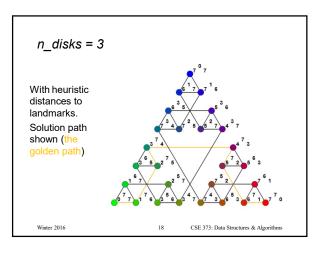
Example: TOH* Graph
G = (V, E) v ₀ = [[4321],[],[]]
$v_k = [p_0, p_1, p_2]; p_m = [d_{m,0}, d_{m,1}, \ldots, d_{m,n_m}]$
$ \begin{array}{ll} \pmb{\phi}_{i,j} & \text{transition:} \\ & p_i \colon [\ \alpha, d_{i,n_i}], \ p_j \colon \ [\ \beta \] \ \Rightarrow p_i \colon [\ \alpha \], \ p_j \colon \ [\ \beta, d_{i,n_i}] \end{array} $
The precondition is that peg i must have at least one disk, and if peg j has any disks, the top (last) disk on peg i must be smaller than the last disk on peg j.
The transition is that the top disk on peg i is removed from peg i and put on the top of the pile on peg j. *Towers of Hanoi
Winter 2016 CSE 373: Data Structures & Algorithms 7

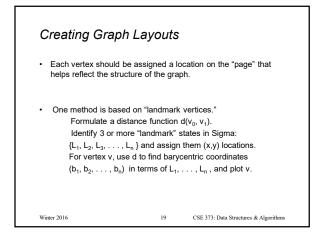




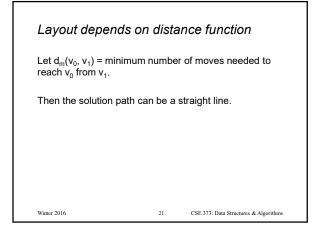
TOH Graph – properties	
G _n = TOH graph for an n-disk TOH puzzle.	n=1, n=2
$G_n = (V_n, E_n)$	
What is $ V_n $?	3 9
What is $ E_n $?	3 12
Diameter of G _n ?	1 3
Longest distance between two vertices of the graph.	
Winter 2016 CSE 373: Data Structures & Algorithms	10


TOH Graph – properties					
G_n = TOH graph for an n-disk TOH puzzle.	n=	n=1, n=2, n=3, n=4			
$G_n = (V_n, E_n)$					
What is $ V_n $?	3	9	27	81	
What is $ E_n $?	3	12	39	120	
Diameter of G _n ?	1	3	7	15	
Longest distance between two vertices of the graph.	e				
Winter 2016 CSE 373: Data Structures & Algorithms				12	






TOH Graph – properties					
G _n = TOH graph for an n-disk TOH puzzle.	n	n=1, n=2, n=3, n=4			
$G_n = (V_n, E_n)$					
What is $ V_n $? $ V_n = 3 \cdot V_{n-1} $	3	9	27	81	
What is $ \mathbf{E}_n $? $ \mathbf{E}_n = 3 \cdot \mathbf{V}_n + 3$	3	12	39	120	
$\begin{array}{l} \text{Diameter of } G_n ? \\ \hline D(G_n) = 2 \cdot D(G_{n-1}) + 1 \\ \text{Longest distance between two vertices of th} \\ graph. \end{array}$	1 e	3	7	15	
Winter 2016 CSE 373: Data Structures & Algorithms	ŝ			15	


TOH Graph – properties					
G _n = TOH graph for an n-disk TOH puzzle	e. n	n=1, n=2, n=3, n=4			
$G_n = (V_n, E_n)$					
What is $ V_n $? $ V_n = 3 \cdot V_{n-1} $	3	9	27	81	
What is $ \mathbf{E}_n $? $ \mathbf{E}_n = 3 \cdot \mathbf{V}_n + 3$	3	12	39	120	
$\begin{array}{c} \text{Diameter of } G_n \ ? \\ D(G_n) = 2 \cdot D(G_{n-1}) + 1 \\ \text{Longest distance between two vertices of } t \\ graph. \end{array}$	1 he	3	7	15	
Winter 2016 CSE 373: Data Structures & Algorithm	ns			16	

