Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept

- A graph is a pair
 \[G = (V, E) \]
 - A set of vertices, also known as nodes
 \[V = \{v_1, v_2, \ldots, v_n\} \]
 - A set of edges
 \[E = \{e_1, e_2, \ldots, e_m\} \]
 - Each edge \(e_i \) is a pair of vertices \((v_j, v_k) \)
 - An edge "connects" the vertices

- Graphs can be directed or undirected

Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always "two-way"

- Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).

- Let \((u, v) \in E\) mean \(u \rightarrow v\)
- Call \(u\) the source and \(v\) the destination

- In-degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source

Directed Graphs

- In directed graphs (sometimes called digraphs), edges have a direction

- Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).

- Let \((u, v) \in E\) mean \(u \rightarrow v\)
- Call \(u\) the source and \(v\) the destination

Self-Edges, Connectedness

- A self-edge a.k.a. a loop is an edge of the form \((u, u)\)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)

- A node can have a degree / in-degree / out-degree of zero

- A graph does not have to be connected
 - Even if every node has non-zero degree
More notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected? $|V| |V + 1| / 2 \in O(|V|^2)$
 - Maximum for directed? $|V|^2 \in O(|V|^2)$

- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$

Examples

Which would use directed edges? Which would have self-edges?
Which would be connected? Which could have 0-degree nodes?

1. Web pages with links
2. Facebook friends
3. Methods in a program that call each other
4. Road maps (e.g., Google maps)
5. Airline routes
6. Family trees
7. Course pre-requisites

Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples use ints)
 - Orthogonal to whether the graph is directed
 - Some graphs allow negative weights; many do not

Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Paths and Cycles

- A path is a list of vertices $[v_0, v_1, ..., v_n]$ such that $(v_i, v_{i+1}) \in E$ for all $0 \leq i < n$. Say “a path from v_0 to v_n”
- A cycle is a path that begins and ends at the same node ($v_n = v_0$)

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

- Path length: Number of edges in a path
- Path cost: Sum of weights of edges in a path

Example where

$P = $ [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Seattle
Salt Lake City
Chicago
San Francisco
Dallas

length(P) = 5
cost(P) = 11.5
Simple Paths and Cycles

- A simple path repeats no vertices, except the first might be the last:
 - [Seattle, Salt Lake City, San Francisco, Dallas]
 - [Seattle, Salt Lake City, San Francisco, Dallas, Chicago, Seattle]

- Recall, a cycle is a path that ends where it begins:
 - [Seattle, Salt Lake City, San Francisco, Dallas, Chicago, Seattle]

- A simple cycle is a cycle and a simple path:
 - [Seattle, Salt Lake City, San Francisco, Dallas, Chicago, Seattle]

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D? **No**

Does the graph contain any cycles? **No**

Undirected-Graph Connectivity

- An undirected graph is connected if for all pairs of vertices \(u, v\), there exists a path from \(u\) to \(v\)

- An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices \(u, v\), there exists an edge from \(u\) to \(v\)

Directed-Graph Connectivity

- A directed graph is strongly connected if there is a path from every vertex to every other vertex

- A directed graph is weakly connected if there is a path from every vertex to every other vertex ignoring direction of edges

- A complete a.k.a. fully connected directed graph has an edge from every vertex to every other vertex

Trees as Graphs

When talking about graphs, we say a tree is a graph that is:
- Undirected
- Acyclic
- Connected

So all trees are graphs, but not all graphs are trees

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique root
 - We think of edges as directed: parent to children

- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently

Winter 2016

CSE 373: Data Structures & Algorithms
Rooted Trees

- We are more accustomed to **rooted trees** where:
 - We identify a unique root
 - We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree
 - The tree is just drawn differently

Directed Acyclic Graphs (DAGs)

- A **DAG** is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree
- Every DAG is a directed graph
 - But not every directed graph is a DAG

Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites

Density / Sparsity

- Recall: In an undirected graph, \(0 \leq |E| < |V|^2\)
- Recall: In a directed graph: \(0 \leq |E| \leq |V|^2\)
- So for any graph, \(O(|E| + |V|^2)\) is \(O(|V|^2)\)
- Another fact: If an undirected graph is connected, then \(|V| - 1 \leq |E|\)
- Because \(|E|\) is often much smaller than its maximum size, we do not always approximate \(|E|\) as \(O(|V|^2)\)
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., \(|E|\) is \(\Theta(|V|^2)\) we say the graph is dense
 - More sloppily, dense means “lots of edges”
 - If \(|E|\) is \(O(|V|)\) we say the graph is sparse
 - More sloppily, sparse means “most possible edges missing”

What is the Data Structure?

- So graphs are really useful for lots of data and questions
 - For example, “what’s the lowest-cost path from x to y”
- But we need a data structure that represents graphs
 - The “best one” can depend on:
 - Properties of the graph (e.g., dense versus sparse)
 - The common queries (e.g., “is (u, v) an edge?” versus “what are the neighbors of node u?”)
- So we’ll discuss the two standard graph representations
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time versus space

Adjacency Matrix

- Assign each node a number from 0 to \(|V| - 1\)
- A \(|V| \times |V|\) matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If \(M\) is the matrix, then \(M[u][v]\) being true means there is an edge from \(u\) to \(v\)

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
F & T & F & F \\
T & F & F & F \\
F & T & F & T \\
F & F & F & F \\
\end{array}
\]
Adjacency Matrix Properties

- Running time to:
 - Get a vertex's out-edges: $O(|V|)$
 - Get a vertex's in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits
 - Best for sparse or dense graphs? Best for dense graphs

Adjacency List Properties

- Running time to:
 - Get all of a vertex's out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex's in-edges: $O(|E|)$ (but could keep a second adjacency list for this!)
 - Decide if some edge exists: $O(d)$ where d is out-degree of source
 - Insert an edge: $O(1)$ (unless you need to check if it's there)
 - Delete an edge: $O(d)$ where d is out-degree of source

- Space requirements:
 - Good for sparse graphs
 - $O(|V|+|E|)$

Next...

Okay, we can represent graphs

Next lecture we'll implement some useful and non-trivial algorithms

- Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- Shortest paths: Find the shortest or lowest-cost path from x to y
 - Related: Determine if there even is such a path