
3/28/2016

1

CSE373: Data Structures and Algorithms

Graphs and Their Representation

Steve Tanimoto

Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Midterm, in-class Friday Feb. 12

• In class, closed notes, closed book.

• Covers everything up to and including hashing.

– Stacks, queues

– Induction, logs, exponents, geometric series

– Asymptotic analysis and big-O, Omega, Theta

– Dictionaries, BSTs, AVL Trees

– Disjoint sets and the UNION-FIND ADT

– Hash tables and collisions, primary clustering, lazy deletion,
rehashing

• Information, sample past exam and solutions posted online.

Winter 2016 2CSE 373: Data Structures & Algorithms

Graphs

• A graph is a formalism for representing relationships among items

– Very general definition because very general concept

• A graph is a pair
G = (V,E)

– A set of vertices, also known as nodes
V = {v1,v2,…,vn}

– A set of edges
E = {e1,e2,…,em}

• Each edge ei is a pair of vertices

(vj,vk)

• An edge “connects” the vertices

• Graphs can be directed or undirected

Winter 2016 3CSE 373: Data Structures & Algorithms

Han

Leia

Luke

V = {Han,Leia,Luke}
E = {(Luke,Leia),

(Han,Leia),
(Leia,Han)}

Undirected Graphs

• In undirected graphs, edges have no specific direction

– Edges are always “two-way”

Winter 2016 4CSE 373: Data Structures & Algorithms

• Thus, (u,v) E implies (v,u) E

– Only one of these edges needs to be in the set

– The other is implicit, so normalize how you check for it

• Degree of a vertex: number of edges containing that vertex

– Put another way: the number of adjacent vertices

A

B

C

D

Directed Graphs

• In directed graphs (sometimes called digraphs), edges have a
direction

Winter 2016 5CSE 373: Data Structures & Algorithms

• Thus, (u,v) E does not imply (v,u) E.

• Let (u,v) E mean u → v

• Call u the source and v the destination

• In-degree of a vertex: number of in-bound edges,
i.e., edges where the vertex is the destination

• Out-degree of a vertex: number of out-bound edges
i.e., edges where the vertex is the source

or

2 edges here

A

B

C

D
A

B

C

Self-Edges, Connectedness

• A self-edge a.k.a. a loop is an edge of the form (u,u)

– Depending on the use/algorithm, a graph may have:

• No self edges

• Some self edges

• All self edges (often therefore implicit, but we will be explicit)

• A node can have a degree / in-degree / out-degree of zero

• A graph does not have to be connected

– Even if every node has non-zero degree

Winter 2016 6CSE 373: Data Structures & Algorithms

3/28/2016

2

More notation

For a graph G = (V,E):

• |V| is the number of vertices

• |E| is the number of edges

– Minimum?

– Maximum for undirected?

– Maximum for directed?

• If (u,v) E

– Then v is a neighbor of u, i.e., v is adjacent to u

– Order matters for directed edges
• u is not adjacent to v unless (v,u) E

Winter 2016 7CSE 373: Data Structures & Algorithms

A

B

C

D V = {A, B, C, D}
E = {(C, B),

(A, B),
(B, A)
(C, D)}

0
|V||V+1|/2 O(|V|2)
|V|2 O(|V|2)

(assuming self-edges allowed, else subtract |V|)

Examples

Which would use directed edges? Which would have self-edges?
Which would be connected? Which could have 0-degree nodes?

1. Web pages with links

2. Facebook friends

3. Methods in a program that call each other

4. Road maps (e.g., Google maps)

5. Airline routes

6. Family trees

7. Course pre-requisites

Winter 2016 8CSE 373: Data Structures & Algorithms

Weighted Graphs

• In a weighed graph, each edge has a weight a.k.a. cost

– Typically numeric (most examples use ints)

– Orthogonal to whether graph is directed

– Some graphs allow negative weights; many do not

Winter 2016 9CSE 373: Data Structures & Algorithms

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Examples

What, if anything, might weights represent for each of these?

Do negative weights make sense?

• Web pages with links

• Facebook friends

• Methods in a program that call each other

• Road maps (e.g., Google maps)

• Airline routes

• Family trees

• Course pre-requisites

Winter 2016 10CSE 373: Data Structures & Algorithms

Paths and Cycles

• A path is a list of vertices [v0,v1,…,vn] such that (vi,vi+1)
E for all 0 i < n. Say “a path from v0 to vn”

• A cycle is a path that begins and ends at the same node (v0==vn)

Winter 2016 11CSE 373: Data Structures & Algorithms

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost
• Path length: Number of edges in a path

• Path cost: Sum of weights of edges in a path

Example where
P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Winter 2016 12CSE 373: Data Structures & Algorithms

Chicago

Seattle

San Francisco Dallas

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(P) =
cost(P) =

5
11.5

3/28/2016

3

Simple Paths and Cycles

• A simple path repeats no vertices, except the first might be the
last
[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Chicago, Seattle]

• Recall, a cycle is a path that ends where it begins
[Seattle, Salt Lake City, San Francisco, Dallas, Chicago, Seattle]
[Seattle, Salt Lake City, Seattle, Salt Lake City, Seattle]

• A simple cycle is a cycle and a simple path
[Seattle, Salt Lake City, San Francisco, Dallas, Chicago, Seattle]

Winter 2016 13CSE 373: Data Structures & Algorithms

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?

Winter 2016 14CSE 373: Data Structures & Algorithms

A

B

C

D

No

No

Undirected-Graph Connectivity

• An undirected graph is connected if for all
pairs of vertices u,v, there exists a path from u to v

• An undirected graph is complete, a.k.a. fully connected if for all
pairs of vertices u,v, there exists an edge from u to v

Winter 2016 15CSE 373: Data Structures & Algorithms

Connected graph Disconnected graph

plus self edges

Directed-Graph Connectivity

• A directed graph is strongly connected if
there is a path from every vertex to every
other vertex

• A directed graph is weakly connected if
there is a path from every vertex to every
other vertex ignoring direction of edges

• A complete a.k.a. fully connected directed
graph has an edge from every vertex to
every other vertex

Winter 2016 16CSE 373: Data Structures & Algorithms

plus self edges

Trees as Graphs

When talking about graphs,

we say a tree is a graph that is:

– Undirected

– Acyclic

– Connected

So all trees are graphs, but not
all graphs are trees

Winter 2016 17CSE 373: Data Structures & Algorithms

Rooted Trees
• We are more accustomed to rooted trees where:

– We identify a unique root

– We think of edges as directed: parent to children

• Given a tree, picking a root gives a unique rooted tree

– The tree is just drawn differently

Winter 2016 18CSE 373: Data Structures & Algorithms

A

B

D E

C

F

HG

redrawn
A

B

D E

C

F

HG

3/28/2016

4

Rooted Trees
• We are more accustomed to rooted trees where:

– We identify a unique root

– We think of edges as directed: parent to children

• Given a tree, picking a root gives a unique rooted tree

– The tree is just drawn differently

Winter 2016 19CSE 373: Data Structures & Algorithms

A

B

D E

C

F

HG

redrawn

F

G H C

A

B

D E

Directed Acyclic Graphs (DAGs)

• A DAG is a directed graph with no (directed) cycles

– Every rooted directed tree is a DAG

– But not every DAG is a rooted directed tree

– Every DAG is a directed graph

– But not every directed graph is a DAG

Winter 2016 20CSE 373: Data Structures & Algorithms

Examples

Which of our directed-graph examples do you expect to be a DAG?

• Web pages with links

• Methods in a program that call each other

• Airline routes

• Family trees

• Course pre-requisites

Winter 2016 21CSE 373: Data Structures & Algorithms

Density / Sparsity

• Recall: In an undirected graph, 0 ≤ |E| < |V|2

• Recall: In a directed graph: 0 ≤ |E| ≤ |V|2

• So for any graph, O(|E|+|V|2) is O(|V|2)

• Another fact: If an undirected graph is connected, then |V|-1 ≤ |E|

• Because |E| is often much smaller than its maximum size, we do not
always approximate |E| as O(|V|2)

– This is a correct bound, it just is often not tight

– If it is tight, i.e., |E| is (|V|2) we say the graph is dense

• More sloppily, dense means “lots of edges”

– If |E| is O(|V|) we say the graph is sparse

• More sloppily, sparse means “most possible edges missing”

Winter 2016 22CSE 373: Data Structures & Algorithms

What is the Data Structure?

• So graphs are really useful for lots of data and questions

– For example, “what’s the lowest-cost path from x to y”

• But we need a data structure that represents graphs

• The “best one” can depend on:

– Properties of the graph (e.g., dense versus sparse)
– The common queries (e.g., “is (u,v) an edge?” versus

“what are the neighbors of node u?”)

• So we’ll discuss the two standard graph representations

– Adjacency Matrix and Adjacency List

– Different trade-offs, particularly time versus space

Winter 2016 23CSE 373: Data Structures & Algorithms

Adjacency Matrix

• Assign each node a number from 0 to |V|-1

• A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

– If M is the matrix, then M[u][v] being true
means there is an edge from u to v

Winter 2016 24CSE 373: Data Structures & Algorithms

A(0)

B(1)

C(2)

D(3)

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

3/28/2016

5

Adjacency Matrix Properties

• Running time to:

– Get a vertex’s out-edges:

– Get a vertex’s in-edges:

– Decide if some edge exists:

– Insert an edge:

– Delete an edge:

• Space requirements:

– |V|2 bits

• Best for sparse or dense graphs?

– Best for dense graphs

Winter 2016 CSE 373: Data Structures & Algorithms 25

0 1 2

0

1

2

3

3

T

T

T T

F F F

F F F

F F

F F F F

O(|V|)
O(|V|)

O(1)
O(1)
O(1)

Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?

– Undirected will be symmetric around the diagonal

• How can we adapt the representation for weighted graphs?

– Instead of a Boolean, store a number in each cell

– Need some value to represent ‘not an edge’

• In some situations, 0 or -1 works

Winter 2016 CSE 373: Data Structures & Algorithms 26

Adjacency List

• Assign each node a number from 0 to |V|-1

• An array of length |V| in which each entry stores a list of all
adjacent vertices (e.g., linked list)

Winter 2016 27CSE 373: Data Structures & Algorithms

0

1

2

3

1 /

0 /

3 1 /

/

A(0)

B(1)

C(2)

D(3)

Adjacency List Properties

• Running time to:

– Get all of a vertex’s out-edges:

O(d) where d is out-degree of vertex

– Get all of a vertex’s in-edges:

O(|E|) (but could keep a second adjacency list for this!)

– Decide if some edge exists:

O(d) where d is out-degree of source

– Insert an edge:

O(1) (unless you need to check if it’s there)

– Delete an edge:

O(d) where d is out-degree of source

• Space requirements:

– O(|V|+|E|)

Winter 2016 CSE 373: Data Structures & Algorithms 28

0

1

2

3

1 /

0 /

3 1 /

/

• Good for sparse graphs

Next…

Okay, we can represent graphs

Next lecture we’ll implement some useful and non-trivial algorithms

• Topological sort: Given a DAG, order all the vertices so that
every vertex comes before all of its neighbors

• Shortest paths: Find the shortest or lowest-cost path from x to y

– Related: Determine if there even is such a path

Winter 2016 29CSE 373: Data Structures & Algorithms

