The plan

Last lecture:
- Disjoint sets
- The union-find ADT for disjoint sets

Today's lecture:
- Basic implementation of the union-find ADT with “up trees”
- Optimizations that make the implementation much faster

Union-Find ADT

- Given an unchanging set S, create an initial partition of a set
 - Typically each item in its own subset: {a}, {b}, {c}, …
 - Give each subset a "name" by choosing a representative element
- Operation `find` takes an element of S and returns the representative element of the subset it is in
- Operation `union` takes two subsets and (permanently) makes one larger subset
 - A different partition with one fewer set
 - Affects result of subsequent `find` operations
 - Choice of representative element up to implementation

Implementation – our goal

- Start with an initial partition of n subsets
 - Often 1-element sets, e.g., {1}, {2}, {3}, …, {n}
- May have m `find` operations
- May have up to $n-1$ `union` operations in any order
 - After $n-1$ `union` operations, every `find` returns same 1 set

Up-tree data structure

- Tree with:
 - No limit on branching factor
 - References from children to parent
- Start with forest of 1-node trees
- Possible forest after several unions:
 - Will use roots for set names

Find

`find(x)`:
- Assume we have $O(1)$ access to each node
 - Will use an array where index i holds node i
 - Start at x and follow parent pointers to root
 - Return the root

`find(6) = 7`
Union

union(x, y):
- Assume x and y are roots
- Else find the roots of their trees
- Assume distinct trees (else do nothing)
- Change root of one to have parent be the root of the other
 - Notice no limit on branching factor

```
union(1,7)
```

Simple implementation

- If set elements are contiguous numbers (e.g., 1, 2, ..., n), use an array of length n called `up`:
 - Starting at index 1 on slides
 - Put in array index of parent, with 0 (or -1, etc.) for a root
- Example:
 - Array: `[1, 2, 3, 4, 5, 6, 7]`
 - `up`: `[0, 1, 0, 7, 7, 5, 0]`

```
int find(int x) {
    while (up[x] != 0) {
        x = up[x];
    }
    return x;
}

void union(int x, int y) {
    up[y] = x;
}
```

Implement operations

- Worst-case run-time for `union`? \(O(1)\)
- Worst-case run-time for `find`? \(O(n)\)
- Worst-case run-time for \(m\) `finds` and \(n-1\) `unions`? \(O(m^2n)\)

The bad case to avoid

```
1 2 3 ... 6
2 3 ... 6 union(2,1)
1 3 ... 6 union(3,2)
1 2 3 ... 6 union(n,n-1)
1 2 3 ...

find(1) = n steps!!
```

Two key optimizations

1. Improve `union` so it stays \(O(1)\) but makes `find` \(O(\log n)\):
 - So \(m\) `finds` and \(n-1\) `unions` is \(O(m \log n + n)\)
 - Union-by-size: connect smaller tree to larger tree
2. Improve `find` so it becomes even faster:
 - Make \(m\) `finds` and \(n-1\) `unions` *almost* \(O(m + n)\)
 - Path-compression: connect directly to root during `finds`

Union-by-size

- Always point the smaller (total # of nodes) tree to the root of the larger tree

```
union(1,7)
```
Union-by-size

Union-by-size:
- Always point the smaller (total # of nodes) tree to the root of the larger tree.

Array implementation

Keep the size (number of nodes in a second array)
- Or have one array of objects with two fields:

Nice trick

Actually we do not need a second array...
- Instead of storing 0 for a root, store negation of size
- So up value < 0 means a root

The Bad case? Now a Great case...

General analysis

- Showing one worst-case example is now good is not a proof that the worst-case has improved.
- So let’s prove:
 - union is still \(O(1)\) – this is “obvious”
 - find is now \(O(\log n)\)
- Claim: If we use union-by-size, an up-tree of height \(h\) has at least \(2^h\) nodes
 - Proof by induction on \(h\)...
The key idea

Intuition behind the proof: No one child can have more than half the nodes

So, as usual, if number of nodes is exponential in height, then height is logarithmic in number of nodes

So \(\text{find} \) is \(O(\log n) \)

The new worst case

n/2 Unions-by-size

n/4 Unions-by-size

The new worst case (continued)

After n/2 + n/4 + ... + 1 Unions-by-size:

Height grows by 1 a total of \(\log n \) times

What about union-by-height

We could store the height of each root rather than size

• Still guarantees logarithmic worst-case find
 – Proof left as an exercise if interested

• But does not work well with our next optimization
 – Maintaining height becomes inefficient, but maintaining size still easy

Two key optimizations

1. Improve union so it stays \(O(1) \) but makes \(\text{find} \) \(O(\log n) \)
 – So \(m \) finds and \(n-1 \) unions is \(O(m \log n + n) \)
 – Union-by-size: connect smaller tree to larger tree

2. Improve \(\text{find} \) so it becomes even faster
 – Make \(m \) finds and \(n-1 \) unions almost \(O(m + n) \)
 – Path-compression: connect directly to root during finds

Path compression

• Simple idea: As part of a \(\text{find} \), change each encountered node’s parent to point directly to root
 – Faster future \(\text{finds} \) for everything on the path (and their descendants)
Pseudocode

```c
// performs path compression
int find(int i) {
    // find root
    int r = i
    while(up[r] > 0)
        r = up[r]
    // compress path
    if(i==r)
        return r;
    int old_parent = up[i]
    while(old_parent != r) {
        up[i] = r
        i = old_parent;
        old_parent = up[i]
    }
    return r;
}
```

Example

```plaintext
Example
```

So, how fast is it?

A single worst-case find could be $O(\log n)$
- But only if we did a lot of worst-case unions beforehand
- And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than $O(\log n)$
- We won’t prove it – see text if curious
- But we will understand it:
 - How it is almost $O(1)$
 - Because total for m finds and $n-1$ unions is almost $O(m+n)$

Almost linear

- Turns out total time for m finds and $n-1$ unions is $O((m+n)(\log^* (m+n)))$
 - Remember, if $m+n < 2^{2^{65536}}$ then $\log^* (m+n) < 5$
 so effectively we have $O(m+n)$
 - Because \log^* grows soooo slowly
 - For all practical purposes, amortized bound is constant, i.e.,
 cost of find is constant, total cost for m finds is linear
 - We say “near linear” or “effectively linear”
 - Need union-by-size and path-compression for this bound
 - Path-compression changes height but not weight, so they interact well
 - As always, asymptotic analysis is separate from “coding it up”

A really slow-growing function

$log^* x$ is the minimum number of times you need to apply “log of log of log” to go from x to a number ≤ 1

For just about every number we care about, $log^* x$ is 5 (!)

If $x < 2^{2^{65536}}$ then $log^* x \leq 5$
- $log^* 2 = 1$
- $log^* 4 = log^* 2^2 = 2$
- $log^* 16 = log^* 2^{2^2} = 3$ (log log log 16 = 1)
- $log^* 65536 = log^* 2^{2^{2^2}} = 4$ (log log log log 65536 = 1)
- $log^* 2^{2^{65536}} = \ldots \ldots \ldots = 5$