
1/15/2016

1

CSE373: Data Structures and Algorithms

Asymptotic Analysis

Steve Tanimoto

Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Efficiency

• What does it mean for an algorithm to be efficient?

– We primarily care about time (and sometimes space)

• Is the following a good definition?

– “An algorithm is efficient if, when implemented, it runs
quickly on real input instances”

– Where and how well is it implemented?

– What constitutes “real input?”

– How does the algorithm scale as input size changes?

2CSE 373 Winter 2016

Gauging efficiency (performance)

• Uh, why not just run the program and time it?

– Too much variability, not reliable or portable:

• Hardware: processor(s), memory, etc.

• OS, Java version, libraries, drivers

• Other programs running

• Implementation dependent

– Choice of input

• Testing (inexhaustive) may miss worst-case input

• Timing does not explain relative timing among inputs
(what happens when n doubles in size)

• Often want to evaluate an algorithm, not an implementation

– Even before creating the implementation (“coding it up”)

3CSE 373 Winter 2016

Comparing algorithms

When is one algorithm (not implementation) better than another?

– Various possible answers (clarity, security, …)

– But a big one is performance: for sufficiently large inputs, runs in
less time (our focus) or less space

We will focus on large inputs because probably any algorithm is “plenty
good” for small inputs (if n is 10, probably anything is fast)

– Time difference really shows up as n grows

Answer will be independent of CPU speed, programming language,
coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and
timing it on some test cases”

- Can do analysis before coding!

4CSE 373 Winter 2016

We usually care about worst-case running times

• Has proven reasonable in practice

– Provides some guarantees

• Difficult to find a satisfactory alternative

– What about average case?

– Difficult to express full range of input

– Could we use randomly-generated input?

– May learn more about generator than algorithm

5CSE 373 Winter 2016

Example

Find an integer in a sorted array

6CSE 373 Winter 2016

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

???
}

1/15/2016

2

Linear search

Find an integer in a sorted array

7CSE 373 Winter 2016

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

for(int i=0; i < arr.length; ++i)
if(arr[i] == k)
return true;

return false;
}

Best case?

k is in arr[0]

6ish steps

= O(1)

Worst case?

k is not in arr

6ish*(arr.length)

= O(arr.length)

Binary search

Find an integer in a sorted array

– Can also be done non-recursively but “doesn’t matter” here

8CSE 373 Winter 2016

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

Binary search

9CSE 373 Winter 2016

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){

return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {

int mid = (hi+lo)/2;
if(lo==hi) return false;
if(arr[mid]==k) return true;
if(arr[mid]< k) return help(arr,k,mid+1,hi);
else return help(arr,k,lo,mid);

}

Best case: about 8 steps = O(1)
Worst case: T(n) 10 steps + T(n/2) where n is hi-lo

• O(log n) where n is array.length

• Solve recurrence equation to know that…

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
– T(n) = 10 + T(n/2) T(1) = 8

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

– T(n) = 10 + 10 + T(n/4)
= 10 + 10 + 10 + T(n/8)
= …
= 10k + T(n/(2k))

3. Find a closed-form expression by setting the argument to T in the
right-hand side to a value (e.g. 1) which reduces the problem to a
base case

– n/(2k) = 1 means n = 2k means k = log2 n
– So T(n) = 10 log2 n + T(1)
– So T(n) = 10 log2 n + 8 (get to base case and do it)
– So T(n) is O(log n)

10CSE 373 Winter 2016

Ignoring constant factors

• So binary search is O(log n) and linear is O(n)

– But which is faster?

• Could depend on constant factors

– How many assignments, additions, etc. for each n

• E.g. T(n) = 5,000,000n vs. T(n) = 5n2

– And could depend on overhead unrelated to n

• E.g. T(n) = 5,000,000 + log n vs. T(n) = 10 + n

• But there exists some n0 such that for all n > n0 binary search wins

• Let’s play with a couple plots to get some intuition…

11CSE 373 Winter 2016

Example
• Let’s try to “help” linear search

– Run it on a computer 100x as fast (say 2014 model vs. 1994)

– Use a new compiler/language that is 3x as fast

– Be a clever programmer to eliminate half the work

– So doing each iteration is 600x as fast as in binary search

12CSE 373 Winter 2016

1/15/2016

3

Big-O relates functions

We use O on a function f(n) (for example n2) to mean the set of
functions with asymptotic behavior less than or equal to f(n)

So (3n2+17) is in O(n2)

– 3n2+17 and n2 have the same asymptotic behavior

Confusingly, we also say/write:

– (3n2+17) is O(n2)

– (3n2+17) = O(n2)

But we would never say O(n2) = (3n2+17)

13CSE 373 Winter 2016

Big-O, formally
Definition: f(n) is in O(g(n)) if there exist

positive constants c and n0 such that

f(n) c g(n) for all n n0

This is equivalent to:

We say that f(n) is in O(g(n))

if and only if

it's possible to demonstrate that f(n) beyond some
value of n becomes bounded by a positive
multiple of g(n).

That value of n is n0. The positive multiple of g(n) is c g(n)

14CSE 373 Winter 2016

Showing Big-O

• To show f(n) is in O(g(n)), pick a c large enough to “cover the constant
factors” and n0 large enough to “cover the lower-order terms”

– Example: Let f(n) = 3n2+17 and g(n) = n2

c=5 and n0 =10 is more than good enough

(3*102)+17 5*102 so 3n2+17 is O(n2)

• This is “less than or equal to”

– So 3n2+17 is also O(n5) and O(2n) etc.

• But usually we’re interested in the tightest upper bound.

15CSE 373 Winter 2016

Example 1, using formal definition

• Let f(n) = 1000n and g(n) = n2

– To prove f(n) is in O(g(n)), find a valid c and n0

– The “cross-over point” is n=1000

• f(1000) = 1000*1000 and g(1000) = 10002

– So we can choose n0=1000 and c=1

• Many other possible choices, e.g., larger n0 and/or c

16CSE 373 Winter 2016

Definition: f(n) is in O(g(n)) if there exist

positive constants c and n0 such that

f(n) c g(n) for all n n0

Example 2, using formal definition

• Let f(n) = n4 and f(n) = 2n

– To prove f(n) is in O(g(n)), find a valid c and n0

– We can choose n0=20 and c=1

• f(20) = 204 vs. g(20) = 1*220

• Note: There are many correct possible choices of c and n0

17CSE 373 Winter 2016

Definition: f(n) is in O(g(n)) if there exist

positive constants c and n0 such that

f(n) c g(n) for all n n0

What’s with the c

• The constant multiplier c is what allows functions that differ only in
their largest coefficient to have the same asymptotic complexity

• Consider:

f(n) = 7n+5

g(n) = n

– These have the same asymptotic behavior (linear)

• So f(n) is in O(g(n)) even through f(n) is always larger

• The c allows us to provide a coefficient so that f(n) c g(n)

– In this example:

• To prove f(n) is in O(g(n)), have c = 12, n0 = 1

(7*1)+5 12*1

18CSE 373 Winter 2016

1/15/2016

4

What you can drop

• Eliminate coefficients because we don’t have units anyway

– 3n2 versus 5n2 doesn’t mean anything when we have not
specified the cost of constant-time operations

• Eliminate low-order terms because they have vanishingly small
impact as n grows

• Do NOT ignore constants that are not multipliers

– n3 is not O(n2)

– 3n is not O(2n)

(This all follows from the formal definition)

19CSE 373 Winter 2016

More Asymptotic Notation

• Upper bound: O(g(n)) is the set of all functions asymptotically
less than or equal to g(n)

– f(n) is in O(g(n)) if there exist constants c and n0 such that

f(n) c g(n) for all n n0

• Lower bound: (g(n)) is the set of all functions asymptotically
greater than or equal to g(n)

– f(n) is in (g(n)) if there exist constants c and n0 such that

f(n) c g(n) for all n n0

• Tight bound: (g(n)) is the set of all functions asymptotically
equal to g(n)

– f(n) is in (g(n)) if both f(n) is in O(g(n)) and

f(n) is in (g(n))

20CSE 373 Winter 2016

Correct terms, in theory

A common error is to say O(g(n)) when you mean (g(n))

– Since a linear algorithm is also O(n5), it’s tempting to say “this
algorithm is exactly O(n)”

– That doesn’t mean anything; say it is (n)
– That means that it is not, for example O(log n)

Less common notation:

– “little-oh”: intersection of “big-O” and not “big-Theta”

• For all c, there exists an n0 such that…
• Example: array sum is o(n2) but not o(n)

– “little-omega”: intersection of “big-Omega” and not “big-Theta”

• For all c, there exists an n0 such that…
• Example: array sum is (log n) but not (n2)

21CSE 373 Winter 2016

What we are analyzing

• The most common thing to do is give an O upper bound to the
worst-case running time of an algorithm

• Example: binary-search algorithm
– Common: O(log n) running-time in the worst-case

– Less common: (1) in the best-case (item is in the middle)

– Less common (but very good to know): the find-in-sorted-
array problem is (log n) in the worst-case

• No algorithm can do better

• A problem cannot be O(g(n)) since you can always make
a slower algorithm

22CSE 373 Winter 2016

Other things to analyze

• Space instead of time

– Remember we can often use space to gain time

• Average case

– Sometimes only if you assume something about the
probability distribution of inputs

– Sometimes uses randomization in the algorithm

• Will see an example with sorting

– Sometimes an amortized guarantee

• Average time over any sequence of operations

• Will discuss in a later lecture

23CSE 373 Winter 2016

Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)

• Time or space (usually time)

– Or power or dollars or …

• Best-, worst-, or average-case (usually worst)

• Upper-, lower-, or tight-bound (usually upper or tight)

24CSE 373 Winter 2016

1/15/2016

5

Big-O Caveats

• Asymptotic complexity focuses on behavior for large n and is
independent of any computer / coding trick

• But you can “abuse” it to be misled about trade-offs

• Example: n1/10 vs. log n

– Asymptotically n1/10 grows more quickly

– But the “cross-over” point is around 5 * 1017

– So if you have input size less than 258, prefer n1/10

• For small n, an algorithm with worse asymptotic complexity
might be faster

– If you care about performance for small n then the constant
factors can matter

25CSE 373 Winter 2016

Addendum: Timing vs. Big-O Summary

• Big-O is an essential part of computer science’s mathematical
foundation

– Examine the algorithm itself, not the implementation

– Reason about (even prove) performance as a function of n

• Timing also has its place

– Compare implementations

– Focus on data sets you care about (versus worst case)

– Determine what the constant factors “really are”

26CSE 373 Winter 2016

