
1/7/2016

1

CSE373: Data Structures and Algorithms
Algorithm Analysis

Steve Tanimoto
Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.  
Thank you to all who have contributed!

Algorithm Analysis
As the “size” of an algorithm’s input grows (integer, length of array, 

size of queue, etc.), we want to know
– How much longer does the algorithm take to run? (time)
– How much more memory does the algorithm need? (space)

Because the curves we saw are so different, often care about only 
“which curve we are like”

Separate issue: Algorithm correctness – does it produce the right 
answer for all inputs
– Usually more important, naturally

CSE 373 Autumn 2014 2

Algorithm Analysis: A first example
• Consider the following program segment: 

x = 0
for i = 1 to n do

for j = 1 to i do
x = x + 1

• What is the value of x at the end?

1 1 to 1      1
2 1 to 2      3
3 1 to 3      6
4 1 to 4      10
…
n 1 to n        ?

= 1 + 2 + 3 + … + (n-1) + n

i j x
Number of times x gets incremented is

= n(n+1)/2

CSE 373 Autumn 2014 3

(pseudocode)

Analyzing the loop
• Consider the following program segment: 

x = 0
for i = 1 to n do

for j = 1 to i do
x = x + 1

• The total number of loop iterations is n(n+1)/2
– This is a very common loop structure, worth memorizing
– This is proportional to n2 , and we say O(n2), “big-Oh of”

• n(n+1)/2 = (n2+ n)/2
• For large enough n, the lower order and constant terms 

are irrelevant, as are the assignment statements
• See plot… (n2+ n)/2 vs. just n2/2

CSE 373 Autumn 2014 4

Lower-order terms don’t matter
n(n+ 1)/2 vs. just n2/2

We just say O(n2)

CSE 373 Autumn 2014 5

Big-O: Common Names
O(1) constant (same as O(k) for constant k)
O(log n) logarithmic
O(n) linear
O(n log n)         “n log n”
O(n2) quadratic
O(n3) cubic
O(nk) polynomial (where is k is any constant)
O(kn) exponential (where k is any constant > 1)
O(n!) factorial
Note: “exponential” does not mean “grows really fast”, it means 

“grows at rate proportional to kn for some k>1”

CSE 373 Autumn 2014 6



1/7/2016

2

Big-O running times
• For a processor capable of one million instructions per second

CSE 373 Autumn 2014 7

Analyzing code
Basic operations  take “some amount of” constant time

– Arithmetic (fixed-width)
– Assignment
– Access one Java field or array index
– Etc.

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of times
Conditionals Time of test plus slower branch
Loops Sum of iterations
Calls Time of call’s body
Recursion Solve recurrence equation       

(next lecture)
CSE 373 Autumn 2014 8

Analyzing code
1. Add up time for all parts of the algorithm

e.g. number of iterations = (n2+ n)/2
2. Eliminate low-order terms, i.e. eliminate n:    (n2)/2
3. Eliminate coefficients, i.e. eliminate 1/2:    (n2)  

Examples:
 4n + 5
 0.5n log n + 2n + 7
 n3 + 2n + 3n
 n log (10n2 )

= 2n log (10n)

= O(n)
= O(n log n)
= O(2n)

= O(n log n)

CSE 373 Autumn 2014 9


