

O(1)	constant (same as $O(k)$ for constant k)	
O(log n)	logarithmic	
O(n)	linear	
O(n log n)	"n log n"	
O(n ²)	quadratic	
O(n ³)	cubic	
O(n ^k)	polynomial (where is k is any constant)	
$O(k^n)$	exponential (where <i>k</i> is any constant > 1)	
O(<i>n</i> !)	factorial	
Note: "expon	ential" does not mean "grows really fast" it means	

Big-O running times

For a processor capable of one million instructions per second

14.7	n	$n \log_2 n$	n ²	n ³ .	1.5 ⁿ	2 ⁿ	nl
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	1017 years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long
						,	
			CSE 373	Autumn 2014			1

, mary zing couc		
Basic operations take "som – Arithmetic (fixed-widt – Assignment – Access one Java field – Etc. (This is an <i>approximation ou</i>	e amount of" constant time h) d or array index f <i>reality</i> : a very useful "lie".)	
Consecutive statements	Sum of times	
Conditionals	Time of test plus slower branch	
Conditionals Loops	Time of test plus slower branch Sum of iterations	
Conditionals Loops Calls	Time of test plus slower branch Sum of iterations Time of call's body	

1. Ad	ld up time for all parts of th	ne algorithm	
	e.g. number of iterations	$= (n^2 + n)/2$	
2. Eli	minate low-order terms, i.	e. eliminate n: (n²)/2	
3. Eli	minate coefficients, i.e. eli	minate 1/2: (n ²)	
Examp	bles:		
•	4n + 5	= O(<i>n</i>)	
•	0.5 <i>n</i> log <i>n</i> + 2 <i>n</i> + 7	$= O(n \log n)$	
	$n^3 + 2^n + 3n$	= O(2 ⁿ)	
•	n log (10n²)		
	- 2m lag (10m)	$= O(n \log n)$	