
1/7/2016

1

CSE373: Data Structures and Algorithms
Induction and Its Applications

Steve Tanimoto
Winter 2016

This lecture material is based on materials provided by Ioana Sora at the Politechnic University
of Timisoara.

Lecture Outline
• Proving the Correctness of Algorithms

– Preconditions and Postconditions
– Loop Invariants
– Induction – Math Review
– Using Induction to Prove Algorithms

2Univ. of Wash. CSE 373 -- Winter 2016

What are key parts of an algorithm ?
• An algorithm is described by:

– Input data
– Output data
– Preconditions: specifies restrictions on input data
– Postconditions: specifies what is the result

• Example: Binary Search
– Input data: a:array of integer; x:integer;
– Output data: found:boolean;
– Precondition: a is sorted in ascending order
– Postcondition: found is true if x is in a, and found is false otherwise

3Univ. of Wash. CSE 373 -- Winter 2016

Correct algorithms
• An algorithm is correct if:

– for any correct input data:
• it stops and
• it produces correct output.

– Correct input data: satisfies precondition
– Correct output data: satisfies postcondition

4Univ. of Wash. CSE 373 -- Winter 2016

Proving correctness
• An algorithm  a list of actions
• Proving that an algorithm is totally correct:

1. Proving that it will terminate
2. Proving that the list of actions applied to the input

(which satisfies the precondition) imply that the output
satisfies the postcondition

– This is easy to prove for simple sequential algorithms
– This can be complicated to prove for repetitive algorithms

(containing loops or recursion)
• use techniques based on loop invariants and induction

5Univ. of Wash. CSE 373 -- Winter 2016

Example – a sequential algorithm
Swap1(x,y):

aux := x
x := y
y := aux

Precondition:
x = a and y = b

Postcondition:
x = b and y = a

Proof: the list of actions applied
to the input (which satisfies
the precondition) imply the
output satisfies the
postcondition

1. Precondition:
x = a and y = b

2. aux := x => aux = a
3. x : = y => x = b
4. y := aux => y = a
5. x = b and y = a is

the Postcondition
6Univ. of Wash. CSE 373 -- Winter 2016

1/7/2016

2

Example – a repetitive algorithm
Proof: The list of actions

applied to the
precondition imply the
postcondition

BUT: we cannot enumerate
all the actions in case of
a repetitive algorithm !

We use techniques based on
loop invariants and
induction

Algorithm Sum_of_N_numbers
Input: integer N, and
a, an array of N numbers

Output: s, the sum of the Nnumbers in a
s:=0;k:=0;while (k<N) dos:=s+a[k];k:=k+1; end

7Univ. of Wash. CSE 373 -- Winter 2016

Loop invariants
• A loop invariant is a logical predicate such

that: if it is satisfied before entering any single
iteration of the loop then it is also satisfied
after the iteration

8Univ. of Wash. CSE 373 -- Winter 2016

Example: Loop invariant for Sum
of n numbers
Algorithm Sum_of_N_numbers
Algorithm Sum_of_N_numbers
Input: integer N, and a, an array of N numbers
Output: s, the sum of the N numbers in a
s:=0;k:=0;while (k<N) dos:=s+a[k];k:=k+1; end

Loop invariant = induction
hypothesis: At step k, s holds the sum of
the first k numbers

9Univ. of Wash. CSE 373 -- Winter 2016

Using loop invariants in proofs
We must show the following 2 things about a loop invariant:
1. Initialization: It is true prior to the first iteration of the loop.
2. Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
We also must show Termination: that the loop terminates.
When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

10Univ. of Wash. CSE 373 -- Winter 2016

Example: Proving the correctness of
the Sum algorithm (1)
• Induction hypothesis: s = sum of the first k numbers
1. Initialization: The hypothesis is true at the

beginning of the loop:
Before the first iteration: k=0, S=0. The first 0

numbers have sum zero (there are no numbers)
=> hypothesis true before entering the loop

11Univ. of Wash. CSE 373 -- Winter 2016

Example: Proving the correctness of
the Sum algorithm (2)

• Induction hypothesis: s = sum of the first k numbers
2. Maintenance: If hypothesis is true before step k, then it will be true before step k+1 (immediately after step k is finished)

We assume that it is true at beginning of step k: “s is the sum of the first k numbers”
We have to prove that after executing step k, at the beginning of step k+1: “s is the sum of the first k+1 numbers”
We calculate the value of s at the end of this step
k:=k+1, s:=s+a[k+1] => s is the sum of the first k+1 numbers

12Univ. of Wash. CSE 373 -- Winter 2016

1/7/2016

3

Example: Proving the correctness of
the Sum algorithm (3)

• Induction hypothesis: s = sum of the first k numbers
3. Termination: When the loop terminates, the

hypothesis implies the correctness of the
algorithm

The loop terminates when k=n
This implies s = sum of first k=n numbers
Thus the postcondition of the algorithm is satisfied.
Q.E.D. (Quod Erat Demonstrandum; we are done.)

13Univ. of Wash. CSE 373 -- Winter 2016

Loop invariants and induction
• Proving loop invariants is a form of mathematical induction:

– showing that the invariant holds before the first iteration
corresponds to the base case, and

– showing that the invariant holds from iteration to iteration
corresponds to the inductive step.

14Univ. of Wash. CSE 373 -- Winter 2016

Mathematical induction - Review
• Let (nc)T(n) be a theorem that we want to prove.

It includes a constant c and a natural parameter n.
• Proving that T holds for all natural values of n

greater than or equal to c is done by proving
following two conditions:

1. T holds for n=c
2. For every n>c if T holds for n-1, then T holds for n

Terminology:
T(c) is the Base Case
T(n-1) is the Induction Hypothesis
T(n-1) => T(n) is the Induction Step
(nc)T(n) is the Theorem being proved.

15Univ. of Wash. CSE 373 -- Winter 2016

Mathematical induction - review
• Strong Induction: a variant of induction

where the inductive step builds up on all the
smaller values

• Proving that T holds for all natural values of
n greater than or equal to c is done by
proving following two conditions:

1. T holds for n=c1, c1+1, …, cm
2. If for every k from c1 up to n-1, it is true that T(k), then T(n)

16Univ. of Wash. CSE 373 -- Winter 2016

Mathematical induction –
Example1
• Theorem: The sum of the first n natural

numbers is n*(n+1)/2
(n1)T(n)  (n1) = n (n+1)/2

• Proof: by induction on n
1. Base case: If n=1, s(1)=1=1*(1+1)/2
2. Inductive step: We assume that s(n)=n*(n+1)/2,

and prove that this implies s(n+1)=(n+1)*(n+2)/2,
for all n1

s(n+1)=s(n)+(n+1)=n*(n+1)/2+(n+1)=(n+1)*(n+2)/2
17Univ. of Wash. CSE 373 -- Winter 2016

 
n
k k1

Mathematical induction –
Example2
• Theorem: Every amount of postage that is at

least 12 cents can be made from 4-cent and
5-cent stamps.

• Proof: by induction on the amount of postage
• Postage (p) = m * 4 + n * 5
• Base cases:

– Postage(12) = 3 * 4 + 0 * 5
– Postage(13) = 2 * 4 + 1 * 5
– Postage(14) = 1 * 4 + 2 * 5
– Postage(15) = 0 * 4 + 3 * 5

18Univ. of Wash. CSE 373 -- Winter 2016

1/7/2016

4

Mathematical induction – Example2 (cont)
• Inductive step: We assume that we can construct

postage for every value from 12 up to k. We need to
show how to construct k + 1 cents of postage. Since
we have proved base cases up to 15 cents, we can
assume that k + 1 ≥ 16.

• Since k+1 ≥ 16, (k+1)−4 ≥ 12. So by the inductive
hypothesis, we can construct postage for (k + 1) − 4
cents: (k + 1) − 4 = m * 4+ n * 5

• But then k + 1 = (m + 1) * 4 + n * 5. So we can
construct k + 1 cents of postage using (m+1) 4-cent
stamps and n 5-cent stamps

19Univ. of Wash. CSE 373 -- Winter 2016

Correctness of algorithms
• Induction can be used for proving the correctness of repetitive

algorithms:
– Iterative algorithms:

• Loop invariants
– Induction hypothesis = loop invariant = relationships

between the variables during loop execution
– Recursive algorithms

• Direct induction
– induction hypothesis = assumption that each

recursive call itself is correct (often a case for
applying strong induction)

20Univ. of Wash. CSE 373 -- Winter 2016

Example: Correctness proof for
Decimal to Binary Conversion
Algorithm Decimal_to_Binary
Input: n, a positive integer
Output: b, an array of bits, the bin repr. of n,

starting with the least significant bits
t:=n;
k:=0;
while (t>0) do

b[k]:=t mod 2;
t:=t div 2;
k:=k+1;

end

It is a repetitive (iterative)
algorithm, thus we use loop
invariants and proof by induction

21Univ. of Wash. CSE 373 -- Winter 2016

Example: Loop invariant for
Decimal to Binary Conversion
Algorithm Decimal_to_Binary
Input: n, a positive integer
Output: b, an array of bits, the bin repr. of n
t:=n;
k:=0;
while (t>0) do

b[k]:=t mod 2;
t:=t div 2;
k:=k+1;

end

At step k, b holds the k least
significant bits of n, and the value
of t, when shifted by k, corresponds
to the rest of the bits

b
0 1 2 k-1

20 21 22 2k-1
22Univ. of Wash. CSE 373 -- Winter 2016

Example: Loop invariant for
Decimal to Binary Conversion
Algorithm Decimal_to_Binary
Input: n, a positive integer
Output: b, an array of bits, the bin repr. of n
t:=n;
k:=0;
while (t>0) do

b[k]:=t mod 2;
t:=t div 2;
k:=k+1;

end

Loop invariant: If m is the
integer represented by array
b[0..k-1], then n=t*2k+m

b
0 1 2 k-1

20 21 22 2k-1
23Univ. of Wash. CSE 373 -- Winter 2016

Example: Proving the correctness of
the conversion algorithm
• Induction hypothesis=Loop Invariant: If m is the integer represented by array b[0..k-1], then n=t*2k+m
• To prove the correctness of the algorithm, we have to prove the 3 conditions:

1. Initialization: The hypothesis is true at the beginning of the loop
2. Maintenance: If hypothesis is true for step k, then it will be true for step k+1
3. Termination: When the loop terminates, the hypothesis implies the correctness of the algorithm

24Univ. of Wash. CSE 373 -- Winter 2016

1/7/2016

5

Example: Proving the correctness of
the conversion algorithm (1)
• Induction hypothesis: If m is the integer

represented by array b[0..k-1], then n=t*2k+m
1. The hypothesis is true at the beginning of the

loop:
k=0, t=n, m=0(array is empty)
n=n*20+0

25Univ. of Wash. CSE 373 -- Winter 2016

Example: Proving the correctness of
the conversion algorithm (2)

• Induction hypothesis: If m is the integer
represented by array b[0..k-1], then n=t*2k+m

2. If hypothesis is true for step k, then it will be true
for step k+1

At the start of step k: assume that n=t*2k+m, calculate the
values at the end of this step

If t is even then: t mod 2=0, m unchanged,
t:=t / 2, k:=k+1=> (t / 2) * 2(k+1) + m = t*2k+m=n

If t is odd then: t mod 2 =1, b[k+1] is set to 1, m=m+2k ,
t:=(t-1)/2, k:=k+1 => (t-1)/2*2(k+1)+m+2k=t*2k+m=n

26Univ. of Wash. CSE 373 -- Winter 2016

Example: Proving the correctness of
the conversion algorithm (3)
• Induction hypothesis: If m is the integer

represented by array b[0..k-1], then n=t*2k+m
3. When the loop terminates, the hypothesis

implies the correctness of the algorithm
The loop terminates when t=0 =>

n=0*2k+m=m
n==m, proved

27Univ. of Wash. CSE 373 -- Winter 2016

Proof of Correctness for
Recursive Algorithms
• In order to prove recursive algorithms, we

have to:
1. Prove the partial correctness (the fact that the

program behaves correctly)
• we assume that all recursive calls with arguments that

satisfy the preconditions behave as described by the
specification, and use it to show that the algorithm
behaves as specified

2. Prove that the program terminates
• any chain of recursive calls eventually ends and all

loops, if any, terminate after some finite number of
iterations.

28Univ. of Wash. CSE 373 -- Winter 2016

Example - Merge Sort
MERGE-SORT(A,p,r)

if p < r
q = (p+r)/2
MERGE-SORT(A,p,q)
MERGE-SORT(A,q+1,r)
MERGE(A,p,q,r)

Precondition:
Array A has at least 1 element between indexes p
and r (p  r)

Postcondition:
The elements between indexes p and r are sorted

p rq

29Univ. of Wash. CSE 373 -- Winter 2016

Example - Merge Sort
MERGE (A,p,q,r)
Precondition: A is an array and p, q, and r are indices into the array such that p  q < r.

The subarrays A[p .. q] and A[q+1 .. r] are sorted
Postcondition: The subarrayA[p..r] is sorted

• MERGE-SORT calls a function MERGE(A,p,q,r) to merge the sorted subarrays of A into a single sorted one
• The proof of MERGE (which is an iterative function) can be done separately, using loop invariants
• We assume here that MERGE has been proved to fulfill its postconditions (can do it as a distinct exercise)

30Univ. of Wash. CSE 373 -- Winter 2016

1/7/2016

6

Correctness proof for Merge-Sort
• Number of elements to be sorted: n=r-p+1
• Base Case: n = 1

– A contains a single element (which is trivially “sorted”)
• Inductive Hypothesis:

– Assume that MergeSort correctly sorts n=1, 2, ..., k elements
• Inductive Step:

– Show that MergeSort correctly sorts n = k + 1 elements.
– First recursive call n1=q-p+1=(k+1)/2  k => subarray A[p .. q] is sorted
– Second recursive call n2=r-q=(k+1)/2  k => subarray A[q+1 .. r] is sorted
– A, p, q, r fulfill now the precondition of Merge
– The postcondition of Merge guarantees that the array A[p .. r] is sorted

=> postcondition of MergeSort

31Univ. of Wash. CSE 373 -- Winter 2016

Correctness proof for Merge-Sort
• Termination:

– To argue termination, we have to find a quantity that
decreases with every recursive call: the length of the part of
A considered by a call to MergeSort

– For the base case, we have a one-element array. the
algorithm terminates in this case without making additional
recursive calls.

32Univ. of Wash. CSE 373 -- Winter 2016

Correctness proofs
for recursive algorithms

• Base Case: Prove that RECURSIVE works for n = small_value
• Inductive Hypothesis:

– Assume that RECURSIVE works correctly for n=small_value, ..., k
• Inductive Step:

– Show that RECURSIVE works correctly for n = k + 1

RECURSIVE(n) is
if (n=small_value)

return simple_answer
else

RECURSIVE(n1)
…
RECURSIVE(nr)
some_code

n1, n2, … nr are some
values smaller than n but
bigger than small_value

33Univ. of Wash. CSE 373 -- Winter 2016

Lecture Summary
• Proving that an algorithm is totally correct

means:
1.Proving that it will terminate
2.Proving that the list of actions applied to the input

(satisfying the precondition) imply the output
satisfies the postcondition.

• How to prove repetitive algorithms correct:
– Iterative algorithms: use Loop invariants,

Induction
– Recursive algorithms: use induction using as

hypothesis the recursive call
34Univ. of Wash. CSE 373 -- Winter 2016

Bibliography
• Weiss, Ch. 1 section on induction.
• Goodrich and Tamassia: Induction and loop invariants; see, e.g.,

http://www.cs.mun.ca/~kol/courses/2711-w09/Induction.pdf)
• Erickson, J. Proof by Induction. Available at:

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-
induction.pdf

35Univ. of Wash. CSE 373 -- Winter 2016

