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CSE373: Data Structures and Algorithms
Induction and Its Applications

Steve Tanimoto
Winter 2016

This lecture material is based on materials provided by Ioana Sora at the Politechnic University 
of Timisoara.

Lecture Outline
• Proving the Correctness of Algorithms

– Preconditions and Postconditions
– Loop Invariants
– Induction – Math Review
– Using Induction to Prove Algorithms
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What are key parts of an algorithm ?
• An algorithm is described by:

– Input data
– Output data
– Preconditions: specifies restrictions on input data
– Postconditions: specifies what is the  result

• Example: Binary Search 
– Input data:  a:array of integer; x:integer;
– Output data: found:boolean;
– Precondition: a is sorted in ascending order
– Postcondition: found is true if x is in a, and found is false otherwise
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Correct algorithms
• An algorithm is correct if:

– for any correct input data:
• it stops and 
• it produces correct output.

– Correct input data: satisfies precondition
– Correct output data: satisfies postcondition
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Proving correctness
• An algorithm  a list of actions
• Proving  that an  algorithm is totally correct:

1. Proving that it will terminate
2. Proving that  the list of actions applied to the input 

(which satisfies the precondition)  imply that the output 
satisfies the postcondition

– This is easy to prove for simple sequential algorithms
– This can be complicated to prove for repetitive algorithms 

(containing loops or recursion)
• use techniques based on loop invariants and induction
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Example – a sequential algorithm
Swap1(x,y):

aux := x
x := y
y := aux

Precondition:
x = a and y = b

Postcondition:
x = b and y = a

Proof: the list of actions applied 
to the input (which satisfies 
the precondition)  imply the 
output satisfies the 
postcondition

1. Precondition:        
x = a and y = b

2. aux := x => aux = a
3. x : = y => x = b 
4. y := aux => y = a 
5. x = b and y = a is 

the Postcondition
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Example – a repetitive algorithm
Proof: The list of actions 

applied to the 
precondition  imply the 
postcondition

BUT: we cannot enumerate 
all the actions in case of 
a repetitive algorithm !

We use techniques based on 
loop invariants and 
induction

Algorithm Sum_of_N_numbers
Input: integer N, and 
a, an array of N numbers

Output: s, the sum of the Nnumbers in a
s:=0;k:=0;while (k<N) dos:=s+a[k];k:=k+1;  end
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Loop invariants
• A loop invariant is a logical predicate such 

that: if it is satisfied before entering any single 
iteration of the loop then it is also satisfied 
after the iteration
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Example: Loop invariant for Sum 
of n numbers
Algorithm Sum_of_N_numbers
Algorithm Sum_of_N_numbers
Input: integer N, and a, an array of N numbers
Output: s, the sum of the N numbers in a
s:=0;k:=0;while (k<N) dos:=s+a[k];k:=k+1;  end

Loop invariant = induction 
hypothesis:  At step k, s holds the sum of 
the first k numbers
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Using loop invariants in proofs
We must show the following 2 things about a loop invariant:
1. Initialization: It is true prior to the first iteration of the loop.
2. Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
We also must show Termination: that the loop terminates.
When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.
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Example: Proving the correctness of  
the  Sum algorithm (1)
• Induction hypothesis: s = sum of the first k numbers
1. Initialization: The hypothesis is true at the 

beginning of the loop:
Before the first iteration: k=0, S=0. The first 0 

numbers have sum zero (there are no numbers) 
=> hypothesis true before entering the loop
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Example: Proving the correctness of  
the  Sum algorithm (2)

• Induction hypothesis: s = sum of the first k numbers
2. Maintenance: If hypothesis is true before step k, then it will be true before step k+1 (immediately after step k is finished)

We assume that it is true at beginning of step k:  “s is the sum of the first k numbers”
We have to prove that after executing step k, at the beginning of step k+1:  “s is the sum of the first k+1 numbers”
We calculate the value of s at the end of this step
k:=k+1, s:=s+a[k+1] => s is the sum of the first k+1 numbers
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Example: Proving the correctness of  
the  Sum algorithm (3)

• Induction hypothesis: s = sum of the first k numbers
3. Termination: When the loop terminates, the 

hypothesis implies the correctness of the 
algorithm

The loop terminates when k=n
This implies  s = sum of first k=n numbers
Thus the postcondition of the algorithm is satisfied.
Q.E.D. (Quod Erat Demonstrandum; we are done.)
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Loop invariants and induction
• Proving loop invariants is a form of mathematical induction:

– showing that the invariant holds before the first iteration 
corresponds to the base case, and 

– showing that the invariant holds from iteration to iteration 
corresponds to the inductive step.
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Mathematical induction - Review
• Let (nc)T(n) be a theorem that we want to prove. 

It includes a constant c and a natural parameter n.
• Proving that T holds for all natural values of n 

greater than or equal to c is done by proving 
following two conditions:

1. T holds for n=c
2. For every n>c   if T holds for n-1, then T holds for n

Terminology:
T(c) is the Base Case
T(n-1)  is the Induction Hypothesis
T(n-1)  => T(n) is the Induction Step
(nc)T(n)  is the Theorem being proved.
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Mathematical induction - review
• Strong Induction: a variant of induction 

where the inductive step builds up on all the 
smaller values

• Proving that T holds for all natural values of 
n greater than or equal to c is done by 
proving following two conditions:

1. T holds for n=c1, c1+1,  …, cm
2. If  for every k from c1 up to n-1, it is true that T(k), then T(n)
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Mathematical induction –
Example1
• Theorem:  The sum of the first n natural 

numbers is n*(n+1)/2
(n1)T(n)  (n1)             = n (n+1)/2

• Proof: by induction on n
1. Base case: If n=1, s(1)=1=1*(1+1)/2
2. Inductive step: We assume that s(n)=n*(n+1)/2, 

and prove that this implies s(n+1)=(n+1)*(n+2)/2, 
for all n1

s(n+1)=s(n)+(n+1)=n*(n+1)/2+(n+1)=(n+1)*(n+2)/2
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Mathematical induction –
Example2
• Theorem: Every amount of postage that is at 

least 12 cents can be made from 4-cent and 
5-cent stamps.

• Proof: by induction on the amount of postage
• Postage (p) = m * 4 + n * 5
• Base cases:

– Postage(12) = 3 * 4 + 0 * 5
– Postage(13) = 2 * 4 + 1 * 5
– Postage(14) = 1 * 4 + 2 * 5
– Postage(15) = 0 * 4 + 3 * 5 
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Mathematical induction – Example2 (cont)
• Inductive step: We assume that we can construct 

postage for every value from 12 up to k. We need to 
show how to construct k + 1 cents of postage. Since 
we have proved base cases up to 15 cents, we can 
assume that k + 1 ≥ 16.

• Since k+1 ≥ 16, (k+1)−4 ≥ 12. So by the inductive 
hypothesis, we can construct postage for (k + 1) − 4 
cents: (k + 1) − 4 = m * 4+ n * 5

• But then k + 1 = (m + 1) * 4 + n * 5. So we can 
construct k + 1 cents of postage using (m+1) 4-cent 
stamps and n 5-cent stamps
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Correctness of algorithms
• Induction can be used for proving the correctness of repetitive 

algorithms:
– Iterative algorithms:

• Loop invariants
– Induction hypothesis = loop invariant = relationships 

between the variables during loop execution
– Recursive algorithms

• Direct induction
– induction hypothesis =  assumption that each 

recursive call itself is correct (often a case for 
applying strong induction)               
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Example: Correctness proof for 
Decimal to Binary Conversion
Algorithm Decimal_to_Binary
Input: n, a positive integer
Output: b, an array of bits, the bin repr. of n,     

starting with the least significant bits  
t:=n;
k:=0;
while (t>0) do

b[k]:=t mod 2;
t:=t div 2;
k:=k+1;

end

It is a repetitive (iterative) 
algorithm, thus we use loop 
invariants and proof by induction
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Example: Loop invariant for 
Decimal to Binary Conversion
Algorithm Decimal_to_Binary
Input: n, a positive integer
Output: b, an array of bits, the bin repr. of n
t:=n;
k:=0;
while (t>0) do

b[k]:=t mod 2;
t:=t div 2;
k:=k+1;

end

At step k, b holds the k least 
significant bits of n,  and the value 
of t, when shifted by k, corresponds 
to the rest of the bits

b
0     1     2 k-1                                      

20 21 22 2k-1
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Example: Loop invariant for 
Decimal to Binary Conversion
Algorithm Decimal_to_Binary
Input: n, a positive integer
Output: b, an array of bits, the bin repr. of n
t:=n;
k:=0;
while (t>0) do

b[k]:=t mod 2;
t:=t div 2;
k:=k+1;

end

Loop invariant: If m is the 
integer represented by array 
b[0..k-1], then n=t*2k+m

b
0       1     2 k-1                                      

20 21 22 2k-1
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Example: Proving the correctness of  
the  conversion algorithm
• Induction hypothesis=Loop Invariant: If m is the integer represented by array b[0..k-1], then n=t*2k+m
• To prove the correctness of the algorithm, we have to prove the  3 conditions:

1. Initialization: The hypothesis is true at the beginning of the loop
2. Maintenance: If hypothesis is true for step k, then it will be true for step k+1
3. Termination: When the loop terminates, the hypothesis implies the correctness of the algorithm
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Example: Proving the correctness of  
the  conversion algorithm (1)
• Induction hypothesis: If m is the integer 

represented by array b[0..k-1], then n=t*2k+m
1. The hypothesis is true at the beginning of the 

loop:
k=0, t=n, m=0(array is empty)
n=n*20+0
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Example: Proving the correctness of  
the  conversion algorithm (2)

• Induction hypothesis: If m is the integer 
represented by array b[0..k-1], then n=t*2k+m

2. If hypothesis is true for step k, then it will be true 
for step k+1

At the start of step k: assume that n=t*2k+m, calculate the 
values at the end of this step

If t is even then:  t mod 2=0,  m unchanged,
t:=t / 2, k:=k+1=> (t / 2) * 2(k+1) + m = t*2k+m=n

If t is odd then: t mod 2 =1, b[k+1] is set to 1, m=m+2k , 
t:=(t-1)/2, k:=k+1 => (t-1)/2*2(k+1)+m+2k=t*2k+m=n
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Example: Proving the correctness of  
the  conversion algorithm (3)
• Induction hypothesis: If m is the integer 

represented by array b[0..k-1], then n=t*2k+m
3. When the loop terminates, the hypothesis 

implies the correctness of the algorithm
The loop terminates when t=0 => 

n=0*2k+m=m
n==m, proved
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Proof of Correctness for 
Recursive Algorithms
• In order to prove recursive algorithms, we 

have to:
1. Prove the partial correctness (the fact that the 

program behaves correctly)
• we assume that all recursive calls with arguments that 

satisfy the preconditions behave as described by the 
specification, and use it to show that the algorithm 
behaves as specified

2. Prove that the program terminates
• any chain of recursive calls eventually ends and all 

loops, if any, terminate after some finite number of 
iterations.
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Example - Merge Sort
MERGE-SORT(A,p,r)

if p < r
q = (p+r)/2
MERGE-SORT(A,p,q)
MERGE-SORT(A,q+1,r)
MERGE(A,p,q,r)

Precondition:
Array A has at least 1 element between indexes p 
and r (p  r)

Postcondition:
The elements between indexes p and r are sorted

p rq
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Example - Merge Sort
MERGE (A,p,q,r)
Precondition: A is an array and p, q, and r are indices into the array such that p  q < r. 

The subarrays A[p .. q] and A[q+1 .. r] are sorted 
Postcondition: The subarrayA[p..r] is sorted

• MERGE-SORT calls a function MERGE(A,p,q,r) to merge the sorted subarrays of A into a single sorted one
• The proof of MERGE (which is an iterative function) can be done separately, using loop invariants
• We assume here that MERGE has been  proved to fulfill its postconditions (can do it as a distinct exercise)
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Correctness proof for Merge-Sort 
• Number of elements to be sorted: n=r-p+1
• Base Case: n = 1 

– A contains a single element (which is trivially “sorted”)  
• Inductive Hypothesis:

– Assume that MergeSort correctly sorts n=1, 2, ..., k elements 
• Inductive Step: 

– Show that MergeSort correctly sorts n = k + 1 elements. 
– First recursive call n1=q-p+1=(k+1)/2  k   => subarray A[p .. q] is sorted 
– Second recursive call n2=r-q=(k+1)/2  k => subarray A[q+1 .. r] is sorted
– A, p, q, r fulfill now  the precondition of  Merge
– The postcondition of Merge guarantees that the array   A[p ..  r] is sorted  

=> postcondition of MergeSort
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Correctness proof for Merge-Sort 
• Termination:

– To argue termination, we have to find a quantity that 
decreases with every recursive call:  the length of the part of 
A considered by a call to MergeSort

– For the base case, we have a one-element array. the 
algorithm terminates in this case without making additional 
recursive calls.
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Correctness proofs 
for  recursive algorithms 

• Base Case: Prove that RECURSIVE works for  n = small_value 
• Inductive Hypothesis:

– Assume that RECURSIVE works correctly for  n=small_value, ..., k
• Inductive Step: 

– Show that RECURSIVE works correctly for n = k + 1

RECURSIVE(n) is
if (n=small_value) 

return simple_answer
else

RECURSIVE(n1)    
…
RECURSIVE(nr)
some_code

n1, n2, … nr are some 
values smaller than n but 
bigger than  small_value 
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Lecture Summary
• Proving  that an  algorithm is totally correct 

means:
1.Proving that it will terminate
2.Proving that  the list of actions applied to the input 

(satisfying the precondition) imply the output 
satisfies the postcondition.

• How to prove repetitive algorithms correct:
– Iterative algorithms: use Loop invariants, 

Induction
– Recursive algorithms: use induction using as 

hypothesis the recursive call
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