What are key parts of an algorithm?

- An algorithm is described by:
 - Input data
 - Output data
 - **Preconditions**: specifies restrictions on input data
 - **Postconditions**: specifies what is the result
- Example: Binary Search
 - Input data: a:array of integer; x:integer;
 - Output data: found:boolean;
 - Precondition: a is sorted in ascending order
 - Postcondition: found is true if x is in a, and found is false otherwise

Correct algorithms

- An algorithm is correct if:
 - for any correct input data:
 - it stops
 - it produces **correct** output.
 - Correct input data: satisfies precondition
 - Correct output data: satisfies postcondition

Example – a sequential algorithm

```plaintext
Swap1(x,y):
  aux := x
  x := y
  y := aux
  Precondition: x = a and y = b
  Postcondition: x = b and y = a
```

Proof: the list of actions applied to the input (which satisfies the precondition) imply the output satisfies the postcondition

1. Precondition:
 - x = a and y = b
2. aux := x => aux = a
3. x := y => x = b
4. y := aux => y = a
5. x = b and y = a is the Postcondition
Example – a repetitive algorithm

Algorithm Sum_of_N_numbers
Input: integer N, and
a, an array of N numbers
Output: s, the sum of the N numbers in a
s:=0;
k:=0;
while (k<N) do
 s:=s+a[k];
 k:=k+1;
end

Proof: The list of actions applied to the precondition imply the postcondition
BUT: we cannot enumerate all the actions in case of a repetitive algorithm!
We use techniques based on loop invariants and induction

Example: Loop invariant for Sum of n numbers

Algorithm Sum_of_N_numbers
Input: integer N, and
a, an array of N numbers
Output: s, the sum of the N numbers in a
s:=0;
k:=0;
while (k<N) do
 s:=s+a[k];
 k:=k+1;
end
Loop invariant = induction hypothesis:
At step k, s holds the sum of the first k numbers

Using loop invariants in proofs

We must show the following 2 things about a loop invariant:
1. Initialization: It is true prior to the first iteration of the loop.
2. Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
We also must show Termination: that the loop terminates.
When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Example: Proving the correctness of the Sum algorithm (1)

• Induction hypothesis: s = sum of the first k numbers
1. Initialization: The hypothesis is true at the beginning of the loop:
Before the first iteration: k=0, S=0. The first 0 numbers have sum zero (there are no numbers) => hypothesis true before entering the loop

Example: Proving the correctness of the Sum algorithm (2)

• Induction hypothesis: s = sum of the first k numbers
2. Maintenance: If hypothesis is true before step k, then it will be true before step k+1 (immediately after step k is finished)
We assume that it is true at beginning of step k: “s is the sum of the first k numbers”
We have to prove that after executing step k, at the beginning of step k+1: “s is the sum of the first k+1 numbers”
We calculate the value of s at the end of this step
k:=k+1, s:=s+a[k+1] => s is the sum of the first k+1 numbers
Example: Proving the correctness of the Sum algorithm (3)

1. Induction hypothesis: \(s = \text{sum of the first } k \text{ numbers} \)

2. Base case: \((\forall n \geq 1) T(n) \) is the Base Case

3. Inductive step: We assume that \(s(n) = n(n+1)/2 \), and prove that this implies \(s(n+1) = (n+1)(n+2)/2 \), for all \(n \geq 1 \)

The loop terminates when \(k = n \)
This implies \(s = \text{sum of first } k = n \text{ numbers} \)
Thus the postcondition of the algorithm is satisfied.
Q.E.D. (Quod Erat Demonstrandum; we are done.)

Loop invariants and induction

- Proving loop invariants is a form of mathematical induction:
 - showing that the invariant holds before the first iteration corresponds to the base case, and
 - showing that the invariant holds from iteration to iteration corresponds to the inductive step.

Mathematical induction - Review

Let \((\forall n \geq c) T(n)\) be a theorem that we want to prove. It includes a constant \(c \) and a natural parameter \(n \).
Proving that \(T \) holds for all natural values of \(n \) greater than or equal to \(c \) is done by proving following two conditions:
1. \(T \) holds for \(n = c \)
2. For every \(n > c \) if \(T \) holds for \(n-1 \), then \(T \) holds for \(n \)

Terminology:
- \(T(c) \) is the Base Case
- \(T(n-1) \) is the Induction Hypothesis
- \(T(n-1) \Rightarrow T(n) \) is the Induction Step
- \((\forall n \geq c) T(n)\) is the Theorem being proved.

Mathematical induction – Example1

Theorem: The sum of the first \(n \) natural numbers is \(n(n+1)/2 \)

\[(\forall n \geq 1) T(n) \iff (\forall n \geq 1) \sum_{k=1}^{n} k = n(n+1)/2 \]

Proof: by induction on \(n \)
1. Base case: if \(n = 1 \), \(s(1) = 1(1+1)/2 \)
2. Inductive step: We assume that \(s(n) = n(n+1)/2 \), and prove that this implies \(s(n+1) = (n+1)(n+2)/2 \), for all \(n \geq 1 \)

\[s(n+1) = s(n) + (n+1) = n(n+1)/2 + (n+1) = (n+1)(n+2)/2 \]

Mathematical induction – Example2

Theorem: Every amount of postage that is at least 12 cents can be made from 4-cent and 5-cent stamps.

Proof: by induction on the amount of postage

- Postage \(p = m \times 4 + n \times 5 \)
- Base cases:
 - Postage(12) = 3 \times 4 + 0 \times 5
 - Postage(13) = 2 \times 4 + 1 \times 5
 - Postage(14) = 1 \times 4 + 2 \times 5
 - Postage(15) = 0 \times 4 + 3 \times 5
Mathematical induction – Example2 (cont)

- Inductive step: We assume that we can construct postage for every value from 12 up to \(k \). We need to show how to construct \(k + 1 \) cents of postage. Since we have proved base cases up to 15 cents, we can assume that \(k + 1 \geq 16 \).
- Since \(k+1 \geq 16 \), \((k+1)−4 \geq 12\). So by the inductive hypothesis, we can construct postage for \((k + 1) - 4\) cents: \((k + 1) - 4 = m \cdot 4 + n \cdot 5\).
- But then \(k + 1 = (m + 1) \cdot 4 + n \cdot 5\). So we can construct \(k + 1 \) cents of postage using \((m+1) \) 4-cent stamps and \(n \) 5-cent stamps.

Correctness of algorithms

- Induction can be used for proving the correctness of repetitive algorithms:
 - Iterative algorithms:
 - Loop invariants
 - Induction hypothesis = loop invariant = relationships between the variables during loop execution
 - Recursive algorithms
 - Direct induction
 - Induction hypothesis = assumption that each recursive call itself is correct (often a case for applying strong induction)

Example: Correctness proof for Decimal to Binary Conversion

Algorithm Decimal_to_Binary

Input: \(n \), a positive integer
Output: \(b \), an array of bits, the bin repr. of \(n \), starting with the least significant bits

\[
t := n; \\
k := 0; \\
while (t > 0) do \\
b[k] := t \mod 2; \\
t := t \div 2; \\
k := k + 1; \\
end
\]

It is a repetitive (iterative) algorithm, thus we use loop invariants and proof by induction

Example: Loop invariant for Decimal to Binary Conversion

Algorithm Decimal_to_Binary

Input: \(n \), a positive integer
Output: \(b \), an array of bits, the bin repr. of \(n \)

At step \(k \), \(b \) holds the \(k \) least significant bits of \(n \), and the value of \(t \), when shifted by \(k \), corresponds to the rest of the bits

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>k-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>2^0</td>
<td>2^1</td>
<td>2^2</td>
<td>2^k-1</td>
</tr>
</tbody>
</table>

Example: Proving the correctness of the conversion algorithm

- Induction hypothesis=Loop Invariant: If \(m \) is the integer represented by array \(b[0..k-1] \), then \(n = t \cdot 2^k + m \)
- To prove the correctness of the algorithm, we have to prove the 3 conditions:
 1. Initialization: The hypothesis is true at the beginning of the loop
 2. Maintenance: If hypothesis is true for step \(k \), then it will be true for step \(k+1 \)
 3. Termination: When the loop terminates, the hypothesis implies the correctness of the algorithm
Example: Proving the correctness of the conversion algorithm (1)

- Induction hypothesis: If \(m \) is the integer represented by array \(b[0..k-1] \), then \(n = t \cdot 2^k + m \)

1. The hypothesis is true at the beginning of the loop:
 - \(k = 0, t = n, m = 0 \) (array is empty)
 - \(n = t \cdot 2^k + 0 \)

2. If hypothesis is true for step \(k \), then it will be true for step \(k+1 \)
 - At the start of step \(k \): assume that \(n = t \cdot 2^k + m \), calculate the values at the end of this step
 - If \(t \) is even then: \(t \mod 2 = 0 \), \(m \) unchanged,
 - \(t := t / 2 \), \(k := k + 1 \) => \((t / 2) \cdot 2^{k+1} + m = t \cdot 2^k + m \)
 - If \(t \) is odd then: \(t \mod 2 = 1 \), \(b[k+1] \) is set to 1, \(m = m + 2^k \),
 - \(t := (t-1) / 2 \), \(k := k + 1 \) => \(((t-1) / 2) \cdot 2^{k+1} + m + 2 = t \cdot 2^k + m \)

3. When the loop terminates, the hypothesis implies the correctness of the algorithm
 - The loop terminates when \(t = 0 \) =>
 - \(n = 0 \cdot 2^k + m = m \)
 - \(n = m \), proved

Proof of Correctness for Recursive Algorithms

- In order to prove recursive algorithms, we have to:
 1. Prove the partial correctness (the fact that the program behaves correctly)
 - We assume that all recursive calls with arguments that satisfy the preconditions behave as described by the specification, and use it to show that the algorithm behaves as specified
 2. Prove that the program terminates
 - Any chain of recursive calls eventually ends and all loops, if any, terminate after some finite number of iterations.

Example - Merge Sort

\[
\text{MERGE-SORT}(A, p, r) \\
\text{if } p < r \\
\quad q = (p + r) / 2 \\
\quad \text{MERGE-SORT}(A, p, q) \\
\quad \text{MERGE-SORT}(A, q+1, r) \\
\quad \text{MERGE}(A, p, q, r) \\
\]

Precondition:
- Array \(A \) has at least 1 element between indexes \(p \) and \(r \) (\(p \leq r \))

Postcondition:
- The elements between indexes \(p \) and \(r \) are sorted
Correctness proof for Merge-Sort

- Number of elements to be sorted: \(n = p + 1 \)
- **Base Case**: \(n = 1 \)
 - \(A \) contains a single element (which is trivially "sorted")
- **Inductive Hypothesis**: Assume that MergeSort correctly sorts \(n = 1, 2, \ldots, k \) elements
- **Inductive Step**: Show that MergeSort correctly sorts \(n = k + 1 \) elements.
 - First recursive call \(n_1 = q - p + 1 \leq k \Rightarrow \) subarray \(A[p..q] \) is sorted
 - Second recursive call \(n_2 = q - r + 1 \leq k \Rightarrow \) subarray \(A[q+1..r] \) is sorted
 - \(A, p, q, r \) fulfill now the precondition of Merge
 - The postcondition of Merge guarantees that the array \(A[p..r] \) is sorted
 \[\Rightarrow \text{postcondition of MergeSort} \]

Termination:
- To argue termination, we have to find a quantity that decreases with every recursive call: the length of the part of \(A \) considered by a call to MergeSort
- For the base case, we have a one-element array, the algorithm terminates in this case without making additional recursive calls.

Correctness proofs for recursive algorithms

\begin{verbatim}
RECURSIVE(n) is
 if (n==small_value)
 return simple_answer
 else
 RECURSIVE(n1)
 ...
 RECURSIVE(nr)
 some_code
\end{verbatim}

- **Base Case**: Prove that RECURSIVE works for \(n = \text{small_value} \)
- **Inductive Hypothesis**: \(n_1, n_2, \ldots, n_k \) are some values smaller than \(n \) but bigger than \(\text{small_value} \)
- **Inductive Step**: Show that RECURSIVE works correctly for \(n = k + 1 \)

Lecture Summary

- Proving that an algorithm is totally correct means:
 1. Proving that it will terminate
 2. Proving that the list of actions applied to the input (satisfying the precondition) imply the output satisfies the postcondition.

- How to prove repetitive algorithms correct:
 - **Iterative** algorithms: use Loop invariants,
 Induction
 - **Recursive** algorithms: use induction using as hypothesis the recursive call

Bibliography

- Weiss, Ch. 1 section on induction.
- Goodrich and Tamassia: Induction and loop invariants; see, e.g., http://www.cs.mun.ca/~kol/courses/2711-w09/Induction.pdf
- Erickson, J. Proof by Induction. Available at: http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-induction.pdf