CSE 373
Review Session

String Hash Functions
Splay Trees

String Hash Function #1
public static int hash(String key, int tableSize)
{

int hashVal = 0;

for(int i = 0; i < key.length(); i++)
hashVal += key.charAt(i);

return hashVal % tableSize;

O 0 S O Lt A W N~

CSE 373 - Summer ‘16

String Hash Function #2

public static int hash(String key, int tableSize)

{
return (key.charAt(0) + 27 * key.charAt(1) +

729 = key.charAt(2)) % tableSize;

D B W N =

CSE 373 - Summer ‘16

String Hash Function #3

7 public static int hash(String key, int tableSize)
8 {

9 int hashval = 0;
10
11 for(int 1 = 0; i < key.length(); i++)
12 hashval = 37 = hashVal + key.charAt(i);
13
14 hashVal %= tableSize;
15 if(hashval <0)
16 hashvVal += tableSize;
17
18 return hashVal;
19 }

CSE 373 - Summer ‘16

String Hash Function #3

Forastring s — §y8, "~ °§,

hys)=3S s, - 37"
i=1

CSE 373 - Summer ‘16

Hash Tables Without Linked Lists

The ith probe for a key £ and a hash table of size s:

Linear Probing:

CSE 373 - Summer ‘16

Hash Tables Without Linked Lists

The ith probe for a key £ and a hash table of size s:

Linear Probing: hi(k,i,s) = [h(k) +(i—-1)] % s

Quadratic Probing:

CSE 373 - Summer ‘16

Hash Tables Without Linked Lists

The ith probe for a key £ and a hash table of size s:

Linear Probing: hi(k,i,s) = [h(k) +(i—-1)] % s

Quadratic Probing: hq(k,1,5) = [h(k) + (i - 1)°] % s

Double Hashing:

CSE 373 - Summer ‘16

Hash Tables Without Linked Lists

The ith probe for a key £ and a hash table of size s:

Linear Probing: hi(k,i,s) = [h(k) +(i—-1)] % s

Quadratic Probing: hq(k,1,5) = [h(k) + (i - 1)°] % s

Double Hashing: hd(ka i,s) = [h(k) + (@ —-1) - g(k,s)] % s

CSE 373 - Summer ‘16

Hash Tables Without Linked Lists

The ith probe for a key £ and a hash table of size s:

Linear Probing: hi(k,i,s) = [h(k) +(i—-1)] % s

Quadratic Probing: hq(k,1,5) = [h(k) + (i - 1)°] % s

Double Hashing: hd(ka i,s) = [h(k) + (@ —-1) - g(k,s)] % s

Where 4 and g are hash functions and g is never 0.
e.g. &k,s) = R—-(R%s) for a prime number R < s.

CSE 373 - Summer ‘16

Splay Trees

Another type of binary search trees:
Structure property: every node has at most 2 children.

Order property: for every node r, every node in the left subtree of r is smaller
than », and every node in the right subtree is bigger than r.

CSE 373 - Summer ‘16

Splay Trees

Runtime guarantee: every tree operation has an amortized runtime of O(log n)
where n is the maximal size of the tree.

That is, starting from an empty tree, every sequence of M consecutive operations
takes O(M log n) time.

Nice properties:
Automatically optimized, such that frequently accessed elements take less time.

Supports efficient (amortized O(log n)) execution of additional operations, such as
merging and splitting around a pivot.

CSE 373 - Summer ‘16

Splay Trees - Operations

Find: same as a regular BST.
But(!!), in order to maintain runtime guarantees, once the element is found
propagate (“splay”) it up to the root.

CSE 373 - Summer ‘16

Find - Bad Implementation (doesn’t work)

Propagate the found node to the root using single rotations:

CSE 373 - Summer ‘16

Find - Bad Implementation (doesn’t work)

Propagate the found node to the root using single rotations:

CSE 373 - Summer ‘16

Find - Bad Implementation (doesn’t work)

Propagate the found node to the root using single rotations:

CSE 373 - Summer ‘16

Find - Bad Implementation (doesn’t work)

Propagate the found node to the root using single rotations:

CSE 373 - Summer ‘16

Find - Bad Implementation (doesn’t work)

Propagate the found node to the root using single rotations:

CSE 373 - Summer ‘16

Find - Good Implementation

Propagate the found node to the root using double rotations:

CSE 373 - Summer ‘16

Find - Good Implementation

Propagate the found node to the root using double rotations:

CSE 373 - Summer ‘16

Find - Good Implementation

Propagate the found node to the root using double rotations:

CSE 373 - Summer ‘16

Find - Good Implementation

Propagate the found node to the root using double rotations:

CSE 373 - Summer ‘16

Find - Good Implementation

Propagate the found node to the root using double rotations:

CSE 373 - Summer ‘16

Find - Another Example

Propagate the found node to the root using double rotations:

CSE 373 - Summer ‘16

