CSE 373 - Review Session 1

1 Induction

Proposition. Let n be a positive integer, then $n^{3}+2 n$ is divisible by 3.
Proof. We will prove the proposition by induction on n.
Base Case. For $n=1$ we have

$$
n^{3}+2 n=1^{3}+2 \cdot 1=3
$$

3 is clearly divisible by 3 , therefore we have found that the proposition holds for the base case.
Induction Hypothesis. Assume that the proposition holds for some positive integer k, that is that $k^{3}+2 k$ is divisible by 3 .
Inductive step. We need to prove that the proposition holds for $k+1$, that is that $(k+1)^{3}+2(k+1)$ is divisible by 3 .
Expanding and reordering we get:

$$
\begin{aligned}
& (k+1)^{3}+2(k+1)= \\
& k^{3}+3 k^{2}+3 k+1+2 k+2= \\
& 3 k^{2}+3 k+3+k^{3}+2 k= \\
& 3\left(k^{2}+k+1\right)+\left(k^{3}+2 k\right)
\end{aligned}
$$

The first term is clearly divisible by 3 and the second term is divisible by 3 according to the induction hypothesis. Therefore, it follows $(k+1)^{3}+2(k+1)$ is divisible by 3 , that is we have proved the inductive step.

We have shown that the proposition holds for 1 and that given that it holds for k it follows that it holds for $k+1$, therefore it follows that the proposition holds for every positive integer.

