Name: _S_Q\Ll*i on g ' ,)

Student #:

CSE373 Summer 2016 Midterm
July 22,2016

Rules:

*

The exam is closed-book, closed-note, closed-calculator, closed-electronic

You have 60 minutes to complete the exam. Please stop promptly at 11:50

If you write any answers on scratch paper, please clearly write your name on every
sheet and write a note on the original sheet directing the grader to the scratch
paper. We are not responsible for lost scratch paper or for answers on scratch
paper that are not seen by the grader due to poor marking.

Code/Pseudocode will be graded on proper behavior/output rather and not on
style, unless otherwise noted. ,

Unless otherwise stated, all logs are base 2.

Problem | Description Earned | Max
1 Asymptotic Analysis 7

2 | Runtime Analysis 12

3 | AVL Trees 9

4 | Miscellaneous Questions 12

5 | Heaps ' 15

6 | Design Decisions 15

7 | Binary Search Trees 10

8 | Extra Credit 1

Total | Total Points 80

Advice:

Read questions carefully. Understand a question before you start writing.

Write down thoughts and intermediate steps so you can get partial credit. Clearly
circle your final answer., i

The questions are not necessarily in order of difficulty. Skip around. Make sure you
get to all of the questions.

If you have questions, ask them.,

Any clarifications will be noted on the projector
Take a deep breath, relax!

-

1) Asymptotic Analysis (7 points)
For each function f(n) below, give an asymptotic upper bound using “Big-Oh” notation.
You should give the tightest and simplest bound possible.

Ex: f(n) = 5n would be O(n), not 0(5n) or 0(n?)

a) f(n) = 12n* O (n)
b) f(n) = 17log(n) + 32n% + 2 () (n !

¢) f(n) = log(log(n)) O‘ ' 03 ("’JL "))

d) f(n) = 0.0002n + nlog(n) + 0.5n(1/2) O (Y’ 'og (h))

- O(log"(n)
e) f(n) = 13log*(n) + log(n'?) + log(log(n)) 0 h
f) f(n) = n(3n-2)2n O‘ !!)

g) f(n) =log(n?) + log (2n) (3 ‘ \03 “) |

2) Runtime Analysis (12 points)
Describe the worst case running time of the following code in “Big-Oh” notation in terms
of the variable n. You should give the tightest bound possible.

a) void bar(int n) { " Runtime:
if (n <= 0) {
print “done”;
else {
print n;

S parn -, O(h)

b) int taz(int n) {
int z = 0;
for (int x = 0; x <
for (int'y = 0; y < n; y++) {
zZ =2z + 2;

y 0(2’)
for (int w =n; Vf,.>= 0; w--) { h

print “okay”;
}
return 0;
}
<) void baz(int n, int sum) {
int i = n;)
while (i > 1) {
for (int j =0; j <n * n *n; j++) {
sum++; ' 3
> Oln’log(n)
i=1/2; ‘r\
}
}

d) int foo(int n) ({
if (n < 5) {
return n - 10;
else {

int x = §;
while (x < n) { ‘1'1)
print “foo”; : , h

X = x + 1;
}

return foo(n - 2):

| %'m =n+T(n-2)

3) AVL Trees (9 points)
Draw the AVL Tree that results from inserting the keys 10,9,12,6,1, 11, 7, 8 in that

order into an initially empty AVL Tree. You are only required to show the final tree,
although if you draw the intermediate trees it may help us award partial credit.

Please circle your final answer for anv credit.

I0) = (o ., (2 | ©

Bg

4) Miscellaneous Questions (12 points)

True/False: Circle one

a) For the union-find implementation discussed in class: using path compression and
STTBY size, find(x) runs in worst case O(1) time and amortized 0(1) time. (TRUE or

b) Performing union(x, y), assuming x and y are representative members of thejpss
respective disjoint sets, can be implemented to run in worst case 0(1) time.{
FALSE))

c) Every AVL Tree is a complete binary tree (TRUE orff Al

d) € A¥rayStack implementation discussed in class has
1@ FALSE) ~

f) Assume a find(x) operation in union-find does path compresgief™§ § Operation that
does the compression gets asymptotically slower. (TRUE oz

Wovded poor \‘j , eYelyone “Yeceived
Short Answer, be concise: (re d i +'

8) (2 points) What is the balance condition for AVLTrees?

The heignt of a node's lef+ and
(tgb‘\t Sobtrees differs by at most

h) (4 points) List two collision resolution schemes for hash tables. For each scheme, list

H " H N R P % N . y @:i;ﬂ,{%
one disadvantage. Be specific. Note, ﬁ%&é@ﬁéﬁ%i heeces +o be onigbe T
. suneme.,

¢ ChAINING . uses much more
SCPWM | 9 Space thon other
Schewmes.

lev Pvnb‘mjz Sufecs 'Gom ?nmaVK

2luederineg

5) Heaps (15 points)

For this problem, you are only required to show the final heaps, although if you draw the
intermediate trees it may help us award partial credit.

Please circle your final answer for any credit.

a) (4 points) Draw the resulting binary tree representation from inserting the following
keys 2,4, 10, 5, 8,3, 7, 1 in that order into an initially empty binary heap.

=) 2 e
%

= b) (2 points) Perform two deleteMin operations on your heap from part a). Show the
heap after each of these operations. Circle each answer.

|
) AN,
LR ST

c) (4 points) Now create a heap from keys[7,1,3,10,5,9,4, 11, 8, 6] using Floyd’s
buildHeap algorithm

Here is pseudocode for a client implementation of buildHeap, using the insert method
described in class.

// Builds a heap from an array of n element
public buildHeap(array) { ’ -

MinHeap h = new MinHeap
for each element in array:
h.insert(element)
}

cU(ZpMnm)Ghmadgﬁbomuﬁm%hewomtamenmﬁmeoﬂhmimpknwnmﬁmﬁn
terms of n. Will this produce a valid heap?

N ineAs, !ojtn\ wimé each.
O (n ‘03(h3)~

\/CS, it wal produte a valid: ‘hcaP

e) (3 points) Is this implementation as good as Floyd’s buildHeap algorithm? Explain.
What is the runtime of Floyd’s buildheap algorithm?

No. Fload‘g turkime s OCn)
wheeead Hoe above wnkime (¢

Ol 04 w)

« Note: Needed sowe sovk of @m@msm "m anotne ¢ Spueture

: re”
6) Design Decisions (15 points) Q{)({ b/ ond L

For each design decision, choose the most efficient structure in terms of time complexity.
You may chose from the following:)

Array, sorted array, sorted linked list, binary search tree, AVL Tree, min heap, up
tree, queue implemented with an array, stack implemented with a linked list,

Explain your decision. If you use a sorted structure, explain what it is sorted by.

a) You are in charge of managing an airport terminal’s gates, with ID’s 1 through 50.
Important operations include: marking a gate as in use or unused.

Sorted avey | 4 \ e spo pdence. of
1D index. gives ve O lookup. ReHor

-~ .

b) Your task is to store a%i(rectog of employees who work at 3 supermarket. Important

dame,

KilTvee, Miows &r fot coed tngen OQog n),
06 well 25 fgk looku OClog) anu priek Sothes OCaD.

A Soked ovvay or LL would have Oln) iIngert,

¢) You want to keep tfack of the 100 most expensive houses in a neighborhood. The only
operations that must run fast are adding a new price, and the retrieval of the n’th
highest price. For instance, if the following prices are stored: 20, 30, 50, 10, 90, 100
and I ask for the 2nd highest price, 90 would be returned.

Socted avvay: index drecthd 4o pih lavgm.
Ingedt s <l Oy, but others condaet +iwe

ULt ree would glve 0('03 h) V\SCH', bt

long vrtime 4o By e nih Iaigest
m&hi ik wo uag.groddi(g&%ﬁnf‘ IW?“?

in nlrto. Coh Qnrb,s RVvrau oo,

s s RN

7. Binary Search Tree: Efficient Merge (10 points)

Given two Binary Search Trees: T1 and T, where every element in T; is less than every
elementinT; (i.e. T; < T,). Write code to merge the two Binary Search Trees. The
resulting tree should also be a Binary Search Tree.

For example: Given the following BSTs T; and Ty:

T4 T,

ONORRGED)

The following would be a valid reépresentation of T after calling T; . me rge(Tz):

T,

! H |

Note: For T:.merge(T,), Ty is merged into T1. We do not care what happens to T after
the merge.

Your method should be as efficient as possible,
Remember: Objects of the same class can access each other’s fields.

Provide your implementation on the next page, some code has already been
provided for you. :
10

public class BSTNode {
public int data;
public BSTNode left; ;
public BSTNode right;

// Creates a new BSTNode with the given data, and left
// and right subtrees.
public BSTNode(int data, BSTNode left, BSTNode right) ({
this.data = data;
this.left = left;
this.right = right;

}

public class BST {
public BSTNode root; // the root of the tree

// Removes the given node from the tree and returns it.
// After removal, the tree is still a BST.
public BSTNode delete(BSTNode nodeToDelete) {

// Already implemented - you.may use this method

}

// you may assume T2 != pull
// you may assume Tl.root != null
// you may assume T2.root != null

// Remember: Objects of the same class can access each
// other’s fields.
public void merge(BST T2) {

// YOUR CODE HERE
One solvtion:
PSTNode temp = root;
while (temp L= nutld //.ﬁhg max(T,)
temp = temp.xig WG’,‘
BSTNode newkoot = delete (temp);
newRoot. left= yooy: .
YewVWoo. X is\nt =T12. ‘too\';

/N
(oot = pew oot v A\ />

8. Bonus (1pt): Tell me a joke! ’ -
g did e programmer QUi
hic 3ob?

He didnt ge’c av(agc(.

