CSE373: Data Structures & Algorithms

Priority Queues

Hunter Zahn
Summer 2016
A Quick Note:

• Homework 3 out! Start early!
A new ADT: Priority Queue

• Textbook Chapter 6
 – Nice to see a new and surprising data structure

• A priority queue holds compare-able data
 – Like dictionaries and unlike stacks and queues, need to compare items
 • Given x and y, is x less than, equal to, or greater than y
 • Meaning of the ordering can depend on your data
 • Many data structures require this: dictionaries, sorting
 – Integers are comparable, so will use them in examples
 • But the priority queue ADT is much more general
 • Typically two fields, the priority and the data
Priorities

• Each item has a “priority”
 – The *lesser* item is the one with the *greater* priority
 – So “priority 1” is more important than “priority 4”
 – (Just a convention, think “first is best”)

• Operations:
 – *insert*
 – *deleteMin*
 – *is_empty*

• Key property: *deleteMin* returns and *deletes* the item with greatest priority (lowest priority value)
 – Can resolve ties arbitrarily
Example

`insert e1` with priority 5
`insert e2` with priority 3
`insert e3` with priority 4

`a = deleteMin` // a = e2
`b = deleteMin` // b = e3

`insert e4` with priority 2
`insert e5` with priority 6

`c = deleteMin` // c = e4
`d = deleteMin` // d = e1

- Analogy: `insert` is like `enqueue`, `deleteMin` is like `dequeue`
 - But the whole point is to use priorities instead of FIFO
Applications

Like all good ADTs, the priority queue arises often

– Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system
 – “critical” before “interactive” before “compute-intensive”
 – Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)

• Select print jobs in order of decreasing length?
More applications

- “Greedy” algorithms
 - May see an example when we study graphs in a few weeks

- Forward network packets in order of urgency

- Select most frequent symbols for data compression (cf. CSE143)

- Sorting (first insert all, then repeatedly deleteMin)
 - Much like Homework 1 uses a stack to implement reverse
Finding a good data structure

• Will show an efficient, non-obvious data structure for this ADT
 – But first let’s analyze some “obvious” ideas for n data items
 – All times worst-case; assume arrays “have room”

\[
\text{data} \quad \quad \quad \quad \text{insert algorithm / time} \quad \quad \text{deleteMin algorithm / time}
\]

unsorted array
unsorted linked list
sorted array
sorted linked list
binary search tree
AVL tree
(our) hash table
Need a good data structure!

- Will show an efficient, non-obvious data structure for this ADT
 - But first let’s analyze some “obvious” ideas for \(n \) data items
 - All times worst-case; assume arrays “have room”

<table>
<thead>
<tr>
<th>Data</th>
<th>Insert Algorithm / Time</th>
<th>DeleteMin Algorithm / Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted array</td>
<td>Add at end</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Unsorted linked list</td>
<td>Add at front</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Sorted array</td>
<td>Search / Shift</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>Put in right place</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Binary search tree</td>
<td>Put in right place</td>
<td>(O(n))</td>
</tr>
<tr>
<td>AVL tree</td>
<td>Put in right place</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>(Our) hash table</td>
<td>Add</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

\(\text{(our)} \) hash table supports add \(O(1) \) and iterate over keys \(O(n) \).
More on possibilities

- If priorities are random, binary search tree will likely do better
 - $O(\log n)$ insert and $O(\log n)$ deleteMin on average

- One more idea: if priorities are 0, 1, ..., k can use array of lists
 - insert: add to front of list at arr[priority], $O(1)$
 - deleteMin: remove from lowest non-empty list $O(k)$

- We are about to see a data structure called a “binary heap”
 - $O(\log n)$ insert and $O(\log n)$ deleteMin worst-case
 - Possible because we don’t support unneeded operations; no need to maintain a full sort
 - If items arrive in random order, then insert is $O(1)$ on average
Our data structure

A binary min-heap (or just binary heap or just heap) is:

• Structure property: A complete binary tree
• Heap property: The priority of every (non-root) node is greater than the priority of its parent
 — Not a binary search tree
Structure Property: Completeness

• A Binary Heap is a complete binary tree:
 – A binary tree with all levels full, with a possible exception being the bottom level, which is filled left to right

Examples:

are these trees complete?
Heap Order Property

• The priority of every (non-root) node is greater than (or equal to) that of it’s parent.

Examples:

heap

![Tree diagram]

not a heap

![Tree diagram]

which of these are heaps?
Our data structure

A binary min-heap (or just binary heap or just heap) is:

• **Structure property:** A *complete* binary tree
• **Heap property:** The priority of every (non-root) node is greater than (or equal to) the priority of its parent
 — *Not* a binary search tree
Our data structure

A *binary min-heap* (or just *binary heap* or just *heap*) is:

- **Structure property:** A *complete* binary tree
- **Heap property:** The priority of every (non-root) node is greater than (or equal to) the priority of its parent
 - *Not* a binary search tree
Our data structure

A *binary min-heap* (or just *binary heap* or just *heap*) is:

- **Structure property:** A *complete* binary tree
- **Heap property:** The priority of every (non-root) node is greater than (or equal to) the priority of its parent
 - *Not* a binary search tree

So:

- Where is the highest-priority item?
- What is the height of a heap with *n* items?
Operations: basic idea

- **findMin**: return root.data
- **deleteMin**:
 1. `answer = root.data`
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap property
- **insert**:
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap property

Overall strategy:
- **Preserve structure property**
- **Break and restore heap property**
DeleteMin

1. Delete (and later return) value at root node
2. Restore the Structure Property

- We now have a “hole” at the root
 - Need to fill the hole with another value

- When we are done, the tree will have one less node and must still be complete
3. Restore the Heap Property

Percolate down:

- Keep comparing with both children
- Swap with lesser child and go down one level
 - What happens if we swap with the larger child?
- Done if both children are \(\geq \) item or reached a leaf node

Why is this correct? What is the run time?
DeleteMin: Run Time Analysis

• We will percolate down at most (height of heap) times
 – So run time is $O(\text{height of heap})$

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?
 – height $= \lceil \log_2(n) \rceil$

• Run time of deleteMin is $O(\log n)$
Insert

• Add a value to the tree

• Afterwards, structure and heap properties must still be correct

• Where do we insert the new value?
Insert: Maintain the Structure Property

- There is only one valid tree shape after we add one more node
- So put our new data there and then focus on restoring the heap property
Maintain the heap property

Percolate up:
• Put new data in new location
• If parent larger, swap with parent, and continue
• Done if parent ≤ item or reached root

Why is this correct? What is the run time?
Insert: Run Time Analysis

• Like `deleteMin`, worst-case time proportional to tree height
 – $O(\log n)$

• But... `deleteMin` needs the “last used” complete-tree position and `insert` needs the “next to use” complete-tree position
 – If “keep a reference to there” then `insert` and `deleteMin` have to adjust that reference: $O(\log n)$ in worst case
 – Could calculate how to find it in $O(\log n)$ from the root given the size of the heap
 • But it’s not easy
 • And then `insert` is always $O(\log n)$, promised $O(1)$ on average (assuming random arrival of items)

• There’s a “trick”: don’t represent complete trees with explicit edges!
Array Representation of Binary Trees

From node i:

- left child: $i \times 2$
- right child: $i \times 2 + 1$
- parent: $i / 2$

(wasting index 0 is convenient for the index arithmetic)

Implicit (array) implementation:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Judging the array implementation

Plusses:
• Less “wasted” space
 – Just index 0 and unused space on right
 – In conventional tree representation, one edge per node (except for root), so \(n-1 \) wasted space (like linked lists)
 – Array would waste more space if tree were not complete
• Multiplying and dividing by 2 is very fast (shift operations in hardware)
• Last used position is just index \textbf{size}

Minuses:
• Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: “this is how people do it”