CSE 373: Hash Tables

Hunter Zahn Summer 2016

Announcements

- HW 2 Due tonight (11PM)
- HW 3 out tomorrow (due July 18th, 11PM)

Hash Tables

- Aim for constant-time (i.e., O(1)) find, insert, and delete
 - "On average" under some often-reasonable assumptions
- A hash table is an array of some fixed size

hash table 0 Basic idea: hash function: index = h(key)key space (e.g., integers, strings) TableSize -1

Hash functions

An ideal hash function:

- Fast to compute
- "Rarely" hashes two "used" keys to the same index
 - Often impossible in theory but easy in practice
 - Will handle collisions later

key space (e.g., integers, strings)

hash table 0

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

– Ideas?

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

More rigorous chaining analysis

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by *random* finds, then on average:

• Each "unsuccessful" find compares against λ items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining

Deleting an element using Separate Chaining

0 Another simple idea: If h (key) is already full, - try (h(key) + 1) % TableSize. If full, - try (h(key) + 2) % TableSize. If full, - try (h(key) + 3) % TableSize. If full... 3 4 Example: insert 38, 19, 8, 109, 10 5 6 38 9

- Another simple idea: If h (key) is already full,
 - try (h(key) + 1) % TableSize. If full,
 - try (h(key) + 2) % TableSize. If full,
 - try (h(key) + 3) % TableSize. If full...
- Example: insert 38, 19, 8, 109, 10

0	/
1	/
2	/
3	/
4	/
5	/
6	/
7	/
8	38

19

9

```
    Another simple idea: If h (key) is already full, 0

   - try (h(key) + 1) % TableSize. If full,
   - try (h(key) + 2) % TableSize. If full,
   - try (h(key) + 3) % TableSize. If full...
                                                     3
                                                     4
  Example: insert 38, 19, 8, 109, 10
                                                     5
                                                     6
                                                           38
                                                     9
                                                           19
```

```
    Another simple idea: If h (key) is already full, 0

   - try (h(key) + 1) % TableSize. If full,
                                                           109
   - try (h(key) + 2) % TableSize. If full,
   - try (h(key) + 3) % TableSize. If full...
                                                     3
                                                     4
  Example: insert 38, 19, 8, 109, 10
                                                     5
                                                     6
                                                           38
                                                     9
                                                           19
```

```
    Another simple idea: If h (key) is already full, 0

   - try (h(key) + 1) % TableSize. If full,
                                                           109
   - try (h(key) + 2) % TableSize. If full,
                                                           10
   - try (h(key) + 3) % TableSize. If full...
                                                     3
                                                     4
  Example: insert 38, 19, 8, 109, 10
                                                     5
                                                     6
                                                           38
                                                     9
                                                           19
```

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a sequence of other positions in the table

Trying the next spot is called probing

- We just did linear probing
 - ith probe was (h(key) + i) % TableSize
- In general have some probe function f and use
 h(key) + f(i) % TableSize

Open addressing does poorly with high load factor λ

- So want larger tables
- Too many probes means no more O(1)

Open Addressing

Write pseudocode for find(), assuming everything we've inserted is in the table.

Deletion in open addressing

Brainstorm!

Deletion in Open Addressing

h(k) = k % 7Linear probing

Delete(23) Find(59) Insert(30)

Need to keep track of deleted items... leave a "marker"

Open Addressing

What will our pseudocode for find() look like if we're using lazy deletion?

Other operations

insert finds an open table position using a probe
function

What about **find**?

- Must use same probe function to "retrace the trail" for the data
- Unsuccessful search when reach empty position

What about **delete**?

- Must use "lazy" deletion. Why?
 - Marker indicates "no data here, but don't stop probing"
- Note: delete with chaining is plain-old list-remove

(Primary) Clustering

It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (which is a good thing)

Tends to produce clusters, which lead to long probing sequences

- Called primary clustering
- Saw this starting in our example

[R. Sedgewick]

Analysis of Linear Probing

- Trivial fact: For any $\lambda < 1$, linear probing will find an empty slot
 - It is "safe" in this sense: no infinite loop unless table is full
- Non-trivial facts we won't prove:

Average # of probes given λ (in the limit as **TableSize** $\rightarrow \infty$)

– Unsuccessful search:

Successful search:

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^2}\right)$$

$$\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)} \right)$$

 This is pretty bad: need to leave sufficient empty space in the table to get decent performance

In a chart

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes "large table" but point remains)

• By comparison, chaining performance is linear in λ and has no trouble with $\lambda > 1$

Quadratic probing

We can avoid primary clustering by changing the probe function

```
(h(key) + f(i)) % TableSize
```

A common technique is quadratic probing:

```
f(i) = i^2
```

- So probe sequence is:
 - 0th probe: h(key) % TableSize
 - 1st probe: (h(key) + 1) % TableSize
 - 2nd probe: (h(key) + 4) % TableSize
 - 3rd probe: (h(key) + 9) % TableSize
 - ...
 - ith probe: (h(key) + i²) % TableSize
- Intuition: Probes quickly "leave the neighborhood"

0	
1	
2	
2 3	
4	
4 5 6	
6	
7	
8	18
9	89

0	49
1	
2	
2 3	
4	
4 5 6	
6	
7	
8	18
9	89

0	49
1	
2	58
2 3	
4	
4 5 6	
6	
7	
8	18
8 9	89

0	49
1	
2	58
2 3	79
4	
4 5 6	
6	
7	
8	18
9	89

Another Quadratic Probing Example

Insert:

$$5 \qquad (5\%7=5)$$

$$(55 \% 7 = 6)$$

Insert:

$$5 (5\%7 = 5)$$

(47 % 7 = 5)

TableSize = 7

47

Insert:

TableSize = 7

0	48
1	
2	5
3	55
4	
5	40
6	76

Insert:

TableSize = 7

Doh!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6

- Excel shows takes "at least" 50 probes and a pattern
- Proof uses induction and $(n^2+5) \% 7 = ((n-7)^2+5) \% 7$
 - In fact, for all c and k, (n^2+c) % k = $((n-k)^2+c)$ % k

From Bad News to Good News

Bad news:

 Quadratic probing can cycle through the same full indices, never terminating despite table not being full

Good news:

- If **TableSize** is *prime* and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most **TableSize/2** probes
- So: If you keep $\lambda < \frac{1}{2}$ and **TableSize** is *prime*, no need to detect cycles
- Optional
 - Also, slightly less detailed proof in textbook
 - Key fact: For prime \mathbf{T} and $\mathbf{0} < \mathbf{i}, \mathbf{j} < \mathbf{T}/2$ where $\mathbf{i} \neq \mathbf{j}$, $(\mathbf{k} + \mathbf{i}^2)$ % $\mathbf{T} \neq (\mathbf{k} + \mathbf{j}^2)$ % \mathbf{T} (i.e., no index repeat)

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

Assertion #1: If T = TableSize is **prime** and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in \leq T/2 probes

Assertion #2: For prime T and all $0 \le i,j \le T/2$ and $i \ne j$, $(h(K) + i^2) % T \ne (h(K) + j^2) % T$

Assertion #3: Assertion #2 proves assertion #1.

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

We can prove assertion #2 by contradiction. Suppose that for some $i \neq j$, $0 \leq i, j \leq T/2$, prime T: $(h(K) + i^2) % T = (h(K) + j^2) % T$

Clustering reconsidered

- Quadratic probing does not suffer from primary clustering: no problem with keys initially hashing to the same neighborhood
- But it's no help if keys initially hash to the same index
 - Called secondary clustering
- Can avoid secondary clustering with a probe function that depends on the key: double hashing...

Double hashing

Idea:

- Given two good hash functions h and g, it is very unlikely that for some key, h(key) == g(key)
- So make the probe function f(i) = i*g(key)

Probe sequence:

```
0<sup>th</sup> probe: h(key) % TableSize
1<sup>st</sup> probe: (h(key) + g(key)) % TableSize
2<sup>nd</sup> probe: (h(key) + 2*g(key)) % TableSize
3<sup>rd</sup> probe: (h(key) + 3*g(key)) % TableSize
...
i<sup>th</sup> probe: (h(key) + i*g(key)) % TableSize
```

Detail: Make sure g (key) cannot be 0

Double Hashing Example

TableSize = 7

$$h(K) = K \% 7$$

 $g(K) = 5 - (K \% 5)$

Double-hashing analysis

- Intuition: Because each probe is "jumping" by g (key)
 each time, we "leave the neighborhood" and "go
 different places from other initial collisions"
- But we could still have a problem like in quadratic probing where we are not "safe" (infinite loop despite room in table)
 - It is known that this cannot happen in at least one case:
 - h(key) = key % p
 - g(key) = q (key % q)
 - 2 < q < p
 - p and q are prime

More double-hashing facts

- Assume "uniform hashing"
 - Means probability of g(key1) % p == g(key2) % p is 1/p
- Non-trivial facts we won't prove:

Average # of probes given λ (in the limit as **TableSize** $\rightarrow \infty$)

- Unsuccessful search (intuitive): $\frac{1}{1-\lambda}$

- Successful search (less intuitive): $\frac{1}{\lambda} \log_e \left(\frac{1}{1 \lambda} \right)$
- Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad

Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything
- With chaining, we get to decide what "too full" means
 - Keep load factor reasonable (e.g., < 1)?</p>
 - Consider average or max size of non-empty chains?
- For open addressing, half-full is a good rule of thumb
- New table size
 - Twice-as-big is a good idea, except, uhm, that won't be prime!
 - So go about twice-as-big
 - Can have a list of prime numbers in your code since you won't grow more than 20-30 times

Rehashing

When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - Separate chaining: full (λ = 1)
 - Open addressing: half full ($\lambda = 0.5$)
 - When an insertion fails
 - Some other threshold
- Cost of a single rehashing?

Rehashing Picture

 Starting with table of size 2, double when load factor > 1.

Amortized Analysis of Rehashing

- Cost of inserting n keys is < 3n
- suppose $2^{k} + 1 \le n \le 2^{k+1}$
 - Hashes = n
 - Rehashes = $2 + 2^2 + ... + 2^k = 2^{k+1} 2^k$
 - Total = n + 2^{k+1} 2 < 3n

Example

$$- n = 33$$
, Total = $33 + 64 - 2 = 95 < 99$

Terminology

We and the book use the terms

- "chaining" or "separate chaining"
- "open addressing"

Very confusingly,

- "open hashing" is a synonym for "chaining"
- "closed hashing" is a synonym for "open addressing"

(If it makes you feel any better, most trees in CS grow upside-down @

Equal objects must hash the same

• The Java library (and your project hash table) make a very important assumption that clients must satisfy...

```
If c.compare(a,b) == 0, then we require
h.hash(a) == h.hash(b)
```

- If you ever override equals
 - You need to override hashCode also in a consistent way
 - See CoreJava book, Chapter 5 for other "gotchas" with equals

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
 - But what is the cost of doing, e.g., findMin?
- Can use:
 - Separate chaining (easiest)
 - Open hashing (memory conservation, no linked list management)
 - Java uses separate chaining
- Rehashing has good amortized complexity.
- Also has a big data version to minimize disk accesses: extendible hashing. (See book.)