CSE 373:
Hash Tables

Hunter Zahn
Summer 2016

UW CSE 373, Summer 2016

Announcements

e HW 2 Due tonight (11PM)
 HW 3 out tomorrow (due July 18", 11PM)

UW CSE 373, Summer 2016

Hash Tables

* Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some often-reasonable assumptions

* A hash table is an array of some fixed size

hash table
* Basicidea: 0
hash function:
index = h(key)
>
key space (e.g., integers, strings) TableSize —1

UW CSE 373, Summer 2016

Hash functions

An ideal hash function:
* Fastto compute
 “Rarely” hashes two “used” keys to the same index hash table

— Often impossible in theory but easy in practice

— Will handle collisions later 0

hash function:
index = h(key)

>

TableSize -1

key space (e.g., integers, strings)

UW CSE 373, Summer 2016

hash
keys function buckets

00

01 | 521-8976
ST 02 | 521-1234
 Usa smith "

521-9655

' Sandra Dee -
\’-
15

UW CSE 373, Summer 2016

Collision resolution

Collision:

When two keys map to the same location in the
hash table

We try to avoid it, but number-of-keys exceeds
table size

So hash tables should support collision resolution
— |ldeas?

UW CSE 373, Summer 2016

O 0 3 O D K~ W N —= O

I T S e e O I O e N

Separate Chaining

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42

with mod hashing
and TableSize =10

UW CSE 373, Summer 2016

O 0 3 O D K~ W N —= O

Separate Chaining

> 10

/

~ | T~ | T~ | T~ |~ | Y~]~ |] >~

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

UW CSE 373, Summer 2016 8

O 0 3 O D K~ W N —= O

Separate Chaining

> 10

/

~] T~ | T~ | T~ | | |~

»22

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

UW CSE 373, Summer 2016 9

O 0 3 O D K~ W N —= O

Separate Chaining

10| /

S~ T~ | T~ | ™~

»22| /

107 /

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

UW CSE 373, Summer 2016 10

O 0 3 O D K~ W N —= O

Separate Chaining

> 10

/

S~ T~ | T~ | ™~

»12

»22

>107

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

UW CSE 373, Summer 2016 11

O 0 3 O D K~ W N —= O

Separate Chaining

10| /

>4

S~ T~ | T~ | ™~

Chaining:
All keys that map to the same

12

table location are kept in a list

22| /| (a.k.a.a “chain” or “bucket”)

>107

As easy as it sounds

Example:
insert 10, 22, 107, 12,42
with mod hashing
and TableSize =10

UW CSE 373, Summer 2016 12

More rigorous chaining analysis

Definition: The load factor, A, of a hash table is
N <— number of elements

A=
TableSize

Under chaining, the average number of elements per bucket is A

So if some inserts are followed by random finds, then on average:
* Each “unsuccessful” £ind compares against A items

So we like to keep A fairly low (e.g., 1 or 1.5 or 2) for chaining

UW CSE 373, Summer 2016 13

Deleting an element using Separate
Chaining

UW CSE 373, Summer 2016

14

Alternative: Use empty space in the
table

* Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. Iffull, 1 /

— try (h(key) + 2) % TableSize. Iffull, 2 /

— try (h(key) + 3) % TableSize. Iffull.. 3 /

4 /

 Example: insert 38, 19, 8, 109, 10 5 /
6 /

7 /

8 38

9 /

UW CSE 373, Summer 2016

15

Alternative: Use empty space in the
table

Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. Iffull, 1 /
— try (h(key) + 2) % TableSize. Iffull, 2 /
— try (h(key) + 3) % TableSize. Iffull.. 3 /
4 /
Example: insert 38, 19, 8, 109, 10 5 /
6 /
7 /
8 38
9 19

UW CSE 373, Summer 2016

16

Alternative: Use empty space in the

table

* Another simple idea: If h (key) is already full, 0

— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull..

Example: insert 38, 19, 8, 109, 10

UW CSE 373, Summer 2016

1
2
3
4
5
6
7
8
9

\\\\\\\m

(V)
o0

[
\O

17

Alternative: Use empty space in the

table

* Another simple idea: If h (key) is already full, 0

— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull..

Example: insert 38, 19, 8, 109, 10

UW CSE 373, Summer 2016

1
2
3
4
5
6
7
8
9

109

~ | T~ | T~ | Y~ | | ~

38

19

18

Alternative: Use empty space in the

table

* Another simple idea: If h (key) is already full, 0

— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull..

Example: insert 38, 19, 8, 109, 10

UW CSE 373, Summer 2016

1
2
3
4
5
6
7
8
9

109

10

~ | T~ | -~ | | ~

38

19

19

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions
by trying a sequence of other positions in the table

Trying the next spot is called probing

— We just did linear probing
 i"probewas (h(key) + i) % TableSize

— In general have some probe function £ and use
h(key) + £(i) % TableSize

Open addressing does poorly with high load factor A
— So want larger tables
— Too many probes means no more O(1)

UW CSE 373, Summer 2016 20

Open Addressing

Write pseudocode for find(), assuming
everything we’ve inserted is in the table.

UW CSE 373, Summer 2016

21

Deletion in open addressing

e Brainstorm!

UW CSE 373, Summer 2016

22

Deletion in Open Addressing

AN DN B LN

16

23

59

76

h(k) =k % 7
Linear probing

Delete(23)
Find(59)
Insert(30)

Need to keep track of
deleted items... leave a
“marker’

UW CSE 373, Summer 2016

23

Open Addressing

What will our pseudocode for find() look like if
we’re using lazy deletion?

UW CSE 373, Summer 2016

24

Other operations

insert finds an open table position using a probe
function

What about £ind?

— Must use same probe function to “retrace the trail” for
the data

— Unsuccessful search when reach empty position

What about delete?

— Must use “lazy” deletion. Why?
* Marker indicates “no data here, but don’t stop probing”

— Note: delete with chaining is plain-old list-remove

UW CSE 373, Summer 2016 25

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)

Tends to produce
clusters, which lead to
long probing sequences

e Called primary
clustering

e Saw this starting in our
example

uuwuwmmummuu

mmwﬁuummu

LS o ee @S

L
. quumwu

wmu&éwuuu
UL

uuuuuuuuummuu

uuuuuuuuuuu

e e

RO
muuumMmu
UL

|| @11®)
L

UW CSE 373, Summer 2016

[R. Sedgewick]

Analysis of Linear Probing

Trivial fact: For any A < 1, linear probing will find an empty slot
— ltis “safe” in this sense: no infinite loop unless table is full

Non-trivial facts we won’t prove:

Average # of probes given A (in the limit as TableSize -)
— Unsuccessful search:

i)
—(1+ 5
— Successful search: 2 (1_/1)

=)

This is pretty bad: need to leave sufficient empty space in the
table to get decent performance

UW CSE 373, Summer 2016

27

In a chart

* Linear-probing performance degrades rapidly as table gets full
— (Formula assumes “large table” but point remains)

Average # of Probes

Linear Probing Linear Probing
16.00 i 350.00
14.00] 2 30000
12.00 / g 250.00
10.00 / %5 200.00
8.00 / linear probing * 150.00 linear probing
6.00 / not found Q not found
4.00 ?‘P 100.00
/ linear probing E 50.00 / linear probing
2.00 found > ' i ! found
0.00 < 000
= 00 LN N O WM O™~ < —~ 00 = O O 0™~ WO W T N N
O O 4 AN AN OO < D 1N W S ™~ O = A4 N N < 1N W ™~ 0 O
OO0 00000 OO0 o oo OO0 OO0 OO0 oo o oo
Load Factor Load Factor

* By comparison, chaining performance is linear in A and has no
trouble with A>1

UW CSE 373, Summer 2016 28

Quadratic probing

 We can avoid primary clustering by changing the probe
function

(h(key) + £(1)) % TableSize

* A common technique is quadratic probing:
f£f(i) = i?
— So probe sequence is:
e 0 probe: h(key) % TableSize
1t probe: (h(key) + 1) % TableSize
2" probe: (h(key) + 4) % TableSize
39 probe: (h(key) + 9) % TableSize

it" probe: (h(key) + i?) % TableSize

* |ntuition: Probes quickly “leave the neighborhood”

UW CSE 373, Summer 2016

Quadratic Probing Example

TableSize=10
Insert:

89

18

49

58

79

O 0 3 O D K~ W N —= O

UW CSE 373, Summer 2016

Quadratic Probing Example

O 0 3 O D K~ W N —= O

89

UW CSE 373, Summer 2016

TableSize=10
Insert:

89

18

49

58

79

31

Quadratic Probing Example

O 0 3 O D K~ W N —= O

18

89

UW CSE 373, Summer 2016

TableSize=10
Insert:

89

18

49

58

79

32

Quadratic Probing Example

O 0 3 O D K~ W N —= O

49

18

89

UW CSE 373, Summer 2016

TableSize=10
Insert:

89

18

49

58

79

33

Quadratic Probing Example

O 0 3 O D K~ W N —= O

49

58

18

89

UW CSE 373, Summer 2016

TableSize=10
Insert:

89

18

49

58

79

34

Quadratic Probing Example

O 0 3 O D K~ W N —= O

49

58

79

18

89

UW CSE 373, Summer 2016

TableSize=10
Insert:

89

18

49

58

79

35

Another Quadratic Probing Example

A N A W N = O

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)

UW CSE 373, Summer 2016 36

Another Quadratic Probing Example

A N A W N = O

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)

UW CSE 373, Summer 2016 37

Another Quadratic Probing Example

A N A W N = O

40

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)

UW CSE 373, Summer 2016 38

Another Quadratic Probing Example

A N A W N = O

48

40

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)

UW CSE 373, Summer 2016 39

Another Quadratic Probing Example

A N A W N = O

48

40

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)

UW CSE 373, Summer 2016 40

Another Quadratic Probing Example

A N A W N = O

48

55

40

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)

UW CSE 373, Summer 2016 41

Another Quadratic Probing Example

TableSize =7
0 48
1 Insert:

76 (76 % 7 = 6)
2 5 40 (40 % 7 = 5)
3 55 48 (48 % 7 = 6)

5 (5%7=5)
4 55 (55 % 7 = 6)
5 40 47 (47 % 7 = 5)
6 76

Doh!: Foralln, ((n*n) +5) % 7 is 0, 2, 5, or 6

* Excel shows takes “at least” 50 probes and a pattern

e Proof uses induction and (n?+5) % 7 = ((n-7)%+5)
e Infact, forallcand k, (n?+c) % k = ((n-k)?%+c)

s
5 k

UW CSE 373, Summer 2016

From Bad News to Good News

Bad news:

— Quadratic probing can cycle through the same full indices,
never terminating despite table not being full

Good news:

— If TableSize is prime and A < %, then quadratic probing will
find an empty slot in at most TableSize/2 probes

— So: If you keep A <% and TableSize is prime, no need to
detect cycles

— Optional
* Also, slightly less detailed proof in textbook
* Key fact: ForprimeTand 0 < i,j < T/2wherei = j,
(k + i%?) $ T = (k + j2) % T (i.e, noindex
repeat)

UW CSE 373, Summer 2016 43

Quadratic Probing:

Success guarantee for A < %%

Assertion #1: If T = TableSize is prime and A < ', then
quadratic probing will find an empty slot in = T/2 probes

Assertion #2: Forprime Tandall0 <= i,j = T/2
and i = 9,
(h(K) + i?) $ T = (h(K) + 3%) % T

Assertion #3: Assertion #2 proves assertion #1.

UW CSE 373, Summer 2016 44

Quadratic Probing:

Success guarantee for A < %%

We can prove assertion #2 by contradiction.
Suppose that forsomei=j,0 < i,j = T/2,prime T:
(h(K) + i2) $ T = (h(K) + j2) % T

UW CSE 373, Summer 2016 45

Clustering reconsidered

* Quadratic probing does not suffer from primary
clustering: no problem with keys initially
hashing to the same neighborhood

* Butit’s no help if keys initially hash to the same
index

— Called secondary clustering

e Can avoid secondary clustering with a probe
function that depends on the key: double
hashing...

UW CSE 373, Summer 2016

46

Double hashing

|dea:

— Given two good hash functions h and g, it is very
unlikely that for some key, h (key) == g(key)

— So make the probe function £ (i) = i*g(key)

Probe sequence:

Oth probe: h(key) % TableSize

1%t probe: (h(key) + g(key)) % TableSize
2"d probe: (h(key) + 2*g(key)) % TableSize
3" probe: (h(key) + 3*g(key)) % TableSize

it" probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g (key) cannot be 0

UW CSE 373, Summer 2016 47

Double Hashing Example

Insert(76) 76 % 7 =06
Insert(93) 93 % 7=2

Insert(40) 40 % 7=15

Insert(47) 47 % 7=15
Insert(10) 10% 7=13

Insert(55) 55% 7=6

UW CSE 373, Summer 2016

TableSize =7
h(K)=K % 7
g(K)=5-(K %))

and 5-76% 5=
and 5-93%5=
and 5-40% 5=
and 5-47% 5=
and 5-10% 5=
and 5-55%5=

48

Double-hashing analysis

* Intuition: Because each probe is “jumping” by g (key)
each time, we “leave the neighborhood” and “go
different places from other initial collisions”

* But we could still have a problem like in quadratic
probing where we are not “safe” (infinite loop despite
room in table)

— It is known that this cannot happen in at least one case:

* h(key) = key S p
* g(key) = q - (key % q)
e 2<gx<xp

p and g are prime

UW CSE 373, Summer 2016 49

More double-hashing facts

 Assume “uniform hashing”
— Means probability of g (keyl) % p == g(key2) % p
isl/p
* Non-trivial facts we won’t prove:

Average # of probes given A (in the limit as
TableSize D x) 1

— Unsuccessful search (intuitive):
1- A

— Successful search (less intuitive): 1 1
A 1- A
* Bottom line: unsuccessful bad (but not as bad as linear
probing), but successful is not nearly as bad

UW CSE 373, Summer 2016

50

Rehashing

As with array-based stacks/queues/lists, if table gets too
full, create a bigger table and copy everything

With chaining, we get to decide what “too full” means
— Keep load factor reasonable (e.g., < 1)?
— Consider average or max size of non-empty chains?

For open addressing, half-full is a good rule of thumb

New table size

— Twice-as-big is a good idea, except, uhm, that won’t be
prime!

— So go about twice-as-big

— Can have a list of prime numbers in your code since you
won’t grow more than 20-30 times

Rehashing

When the table gets too full, create a bigger table
(usually 2x as large) and hash all the items from the
original table into the new table.

* \When to rehash?
— Separate chaining: full (A = 1)
— Open addressing: half full (A = 0.5)
— When an insertion fails
— Some other threshold

» Cost of a single rehashing?

52

Rehashing Picture

« Starting with table of size 2, double
when load factor > 1.

Bl hashes
I rehashes

1 23 45 67 89 1011121314 15 161718 1920 212324 25

UW CSE 373, Summer 2016 53

Amortized Analysis of Rehashing

» Cost of inserting n keys is < 3n

¢ suppose 2k + 1 <n < 2k
— Hashes =n
— Rehashes =2+ 22+ | +2k=2k*1_2
— Total =n + 2k*1 -2 < 3n

 Example
— n =33, Total = 33 + 64 —2 = 95 < 99

UW CSE 373, Summer 2016 54

Terminology

We and the book use the terms
— “chaining” or “separate chaining”
— “open addressing”

Very confusingly,
— “open hashing” is a synonym for “chaining”
— “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better,
most trees in CS grow upside-down

&

UW CSE 373, Summer 2016

Equal objects must hash the same

 The Java library (and your project hash table) make a very
important assumption that clients must satisfy...

If c.compare (a,b) == 0, then we require
h.hash(a) == h.hash (b)

* If you ever override equals

— You need to override hashCode also in a consistent way
— See Corelava book, Chapter 5 for other "gotchas" with equals

UW CSE 373, Summer 2016

56

Hashing Summary

-Hashing is one of the most important data structures.
Hashing has many applications where operations are
imited to find, insert, and delete.

— But what is the cost of doing, e.g., findMin?

Can use:

— Separate chaining (easiest)

— Open hashing (memory conservation, no linked list
management)

— Java uses separate chaining
Rehashing has good amortized complexity.

Also has a big data version to minimize disk
accesses: extendible hashing. (See book.)

57

