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Announcements

e HW 2 Due tonight (11PM)
 HW 3 out tomorrow (due July 18", 11PM)
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Hash Tables

* Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some often-reasonable assumptions

* A hash table is an array of some fixed size

hash table
* Basicidea: 0
hash function:
index = h(key)
>
key space (e.g., integers, strings) TableSize —1
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Hash functions

An ideal hash function:
* Fastto compute
 “Rarely” hashes two “used” keys to the same index hash table

— Often impossible in theory but easy in practice

— Will handle collisions later 0

hash function:
index = h(key)

>

TableSize -1

key space (e.g., integers, strings)
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hash
keys function buckets

00

01 | 521-8976
ST 02 | 521-1234
 Usa smith "

521-9655

' Sandra Dee -
\’-
15
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Collision resolution

Collision:

When two keys map to the same location in the
hash table

We try to avoid it, but number-of-keys exceeds
table size

So hash tables should support collision resolution
— |ldeas?
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Separate Chaining

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42

with mod hashing
and TableSize =10
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Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10
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Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

UW CSE 373, Summer 2016 9



O 0 3 O D K~ W N —= O

Separate Chaining

10| /

S~ T~ | T~ | ™~

»22| /

107 /

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10
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Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10
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Separate Chaining
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Chaining:
All keys that map to the same

12

table location are kept in a list

22| /| (a.k.a.a “chain” or “bucket”)

>107

As easy as it sounds

Example:
insert 10, 22, 107, 12,42
with mod hashing
and TableSize =10
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More rigorous chaining analysis

Definition: The load factor, A, of a hash table is
N <— number of elements

A=
TableSize

Under chaining, the average number of elements per bucket is A

So if some inserts are followed by random finds, then on average:
* Each “unsuccessful” £ind compares against A items

So we like to keep A fairly low (e.g., 1 or 1.5 or 2) for chaining
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Deleting an element using Separate
Chaining
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Alternative: Use empty space in the
table

* Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. Iffull, 1 /

— try (h(key) + 2) % TableSize. Iffull, 2 /

— try (h(key) + 3) % TableSize. Iffull.. 3 /

4 /

 Example: insert 38, 19, 8, 109, 10 5 /
6 /

7 /

8 38

9 /
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Alternative: Use empty space in the
table

Another simple idea: If h (key) is already full, 0 /
— try (h(key) + 1) % TableSize. Iffull, 1 /
— try (h(key) + 2) % TableSize. Iffull, 2 /
— try (h(key) + 3) % TableSize. Iffull.. 3 /
4 /
Example: insert 38, 19, 8, 109, 10 5 /
6 /
7 /
8 38
9 19
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Alternative: Use empty space in the

table

* Another simple idea: If h (key) is already full, 0

— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull..

Example: insert 38, 19, 8, 109, 10
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Alternative: Use empty space in the

table

* Another simple idea: If h (key) is already full, 0

— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull..

Example: insert 38, 19, 8, 109, 10
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Alternative: Use empty space in the

table

* Another simple idea: If h (key) is already full, 0

— try (h(key) + 1) % TableSize. Iffull,
— try (h(key) + 2) % TableSize. Iffull,
— try (h(key) + 3) % TableSize. Iffull..

Example: insert 38, 19, 8, 109, 10
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Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions
by trying a sequence of other positions in the table

Trying the next spot is called probing

— We just did linear probing
 i"probewas (h(key) + i) % TableSize

— In general have some probe function £ and use
h(key) + £(i) % TableSize

Open addressing does poorly with high load factor A
— So want larger tables
— Too many probes means no more O(1)
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Open Addressing

Write pseudocode for find(), assuming
everything we’ve inserted is in the table.
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Deletion in open addressing

e Brainstorm!
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Deletion in Open Addressing

AN DN B LN

16

23

59

76

h(k) =k % 7
Linear probing

Delete(23)
Find(59)
Insert(30)

Need to keep track of
deleted items... leave a
“marker’
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Open Addressing

What will our pseudocode for find() look like if
we’re using lazy deletion?
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Other operations

insert finds an open table position using a probe
function

What about £ind?

— Must use same probe function to “retrace the trail” for
the data

— Unsuccessful search when reach empty position

What about delete?

— Must use “lazy” deletion. Why?
* Marker indicates “no data here, but don’t stop probing”

— Note: delete with chaining is plain-old list-remove
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(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)

Tends to produce
clusters, which lead to
long probing sequences

e Called primary
clustering

e Saw this starting in our
example
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Analysis of Linear Probing

Trivial fact: For any A < 1, linear probing will find an empty slot
— ltis “safe” in this sense: no infinite loop unless table is full

Non-trivial facts we won’t prove:

Average # of probes given A (in the limit as TableSize - )
— Unsuccessful search:

i)
—(1+ 5
— Successful search: 2 (1_/1)

=)

This is pretty bad: need to leave sufficient empty space in the
table to get decent performance
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In a chart

* Linear-probing performance degrades rapidly as table gets full
— (Formula assumes “large table” but point remains)

Average # of Probes

Linear Probing Linear Probing
16.00 i 350.00
14.00 ] 2 30000
12.00 / g 250.00
10.00 / %5 200.00
8.00 / linear probing * 150.00 linear probing
6.00 / not found Q not found
4.00 ?‘P 100.00
/ linear probing E 50.00 / linear probing
2.00 found > ' i ! found
0.00 < 000
= 00 LN N O WM O™~ < —~ 00 = O O 0™~ WO W T N N
O O 4 AN AN OO < D 1N W S ™~ O = A4 N N < 1N W ™~ 0 O
OO0 00000 OO0 o oo OO0 OO0 OO0 oo o oo
Load Factor Load Factor

* By comparison, chaining performance is linear in A and has no
trouble with A>1
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Quadratic probing

 We can avoid primary clustering by changing the probe
function

(h(key) + £(1)) % TableSize

* A common technique is quadratic probing:
f£f(i) = i?
— So probe sequence is:
e 0 probe: h(key) % TableSize
1t probe: (h(key) + 1) % TableSize
2" probe: (h(key) + 4) % TableSize
39 probe: (h(key) + 9) % TableSize

it" probe: (h(key) + i?) % TableSize

* |ntuition: Probes quickly “leave the neighborhood”
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Quadratic Probing Example

TableSize=10
Insert:

89

18

49

58

79

O 0 3 O D K~ W N —= O
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Quadratic Probing Example

O 0 3 O D K~ W N —= O

89
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Quadratic Probing Example
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18
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Quadratic Probing Example

O 0 3 O D K~ W N —= O

49

18

89
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Quadratic Probing Example

O 0 3 O D K~ W N —= O

49

58

18

89
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Quadratic Probing Example

O 0 3 O D K~ W N —= O

49

58

79

18

89
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Another Quadratic Probing Example

A N A W N = O

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)
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Another Quadratic Probing Example

A N A W N = O

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)
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Another Quadratic Probing Example

A N A W N = O

40

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)
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Another Quadratic Probing Example

A N A W N = O

48

40

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)
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Another Quadratic Probing Example

A N A W N = O

48

40

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)

UW CSE 373, Summer 2016 40



Another Quadratic Probing Example

A N A W N = O

48

55

40

76

TableSize =7

Insert:

76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)

5 (5%7=5)

55 (55% 7 =6)

47 (47 % 7 = 5)
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Another Quadratic Probing Example

TableSize =7
0 48
1 Insert:

76 (76 % 7 = 6)
2 5 40 (40 % 7 = 5)
3 55 48 (48 % 7 = 6)

5 (5%7=5)
4 55 (55 % 7 = 6)
5 40 47 (47 % 7 = 5)
6 76

Doh!: Foralln, ( (n*n) +5) % 7 is 0, 2, 5, or 6

* Excel shows takes “at least” 50 probes and a pattern

e Proof uses induction and (n?+5) % 7 = ((n-7)%+5)
e Infact, forallcand k, (n?+c) % k = ((n-k)?%+c)

s
5 k
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From Bad News to Good News

Bad news:

— Quadratic probing can cycle through the same full indices,
never terminating despite table not being full

Good news:

— If TableSize is prime and A < %, then quadratic probing will
find an empty slot in at most TableSize/2 probes

— So: If you keep A <% and TableSize is prime, no need to
detect cycles

— Optional
* Also, slightly less detailed proof in textbook
* Key fact: ForprimeTand 0 < i,j < T/2wherei = j,
(k + i%?) $ T = (k + j2) % T (i.e, noindex
repeat)

UW CSE 373, Summer 2016 43



Quadratic Probing:

Success guarantee for A < %%

Assertion #1: If T = TableSize is prime and A < ', then
quadratic probing will find an empty slot in = T/2 probes

Assertion #2: Forprime Tandall0 <= i,j = T/2
and i = 9,
(h(K) + i?) $ T = (h(K) + 3%) % T

Assertion #3: Assertion #2 proves assertion #1.
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Quadratic Probing:

Success guarantee for A < %%

We can prove assertion #2 by contradiction.
Suppose that forsomei=j,0 < i,j = T/2,prime T:
(h(K) + i2) $ T = (h(K) + j2) % T
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Clustering reconsidered

* Quadratic probing does not suffer from primary
clustering: no problem with keys initially
hashing to the same neighborhood

* Butit’s no help if keys initially hash to the same
index

— Called secondary clustering

e Can avoid secondary clustering with a probe
function that depends on the key: double
hashing...

UW CSE 373, Summer 2016
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Double hashing

|dea:

— Given two good hash functions h and g, it is very
unlikely that for some key, h (key) == g(key)

— So make the probe function £ (i) = i*g(key)

Probe sequence:

Oth probe: h(key) % TableSize

1%t probe: (h(key) + g(key)) % TableSize
2"d probe: (h(key) + 2*g(key)) % TableSize
3" probe: (h(key) + 3*g(key)) % TableSize

it" probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g (key) cannot be 0
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Double Hashing Example

Insert(76) 76 % 7 =06
Insert(93) 93 % 7=2

Insert(40) 40 % 7=15

Insert(47) 47 % 7=15
Insert(10) 10% 7=13

Insert(55) 55% 7=6

UW CSE 373, Summer 2016

TableSize =7
h(K)=K % 7
g(K)=5-(K %))

and 5-76% 5=
and 5-93%5=
and 5-40% 5=
and 5-47% 5=
and 5-10% 5=
and 5-55%5=
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Double-hashing analysis

* Intuition: Because each probe is “jumping” by g (key)
each time, we “leave the neighborhood” and “go
different places from other initial collisions”

* But we could still have a problem like in quadratic
probing where we are not “safe” (infinite loop despite
room in table)

— It is known that this cannot happen in at least one case:

* h(key) = key S p
* g(key) = q - (key % q)
e 2<gx<xp

p and g are prime
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More double-hashing facts

 Assume “uniform hashing”
— Means probability of g (keyl) % p == g(key2) % p
isl/p
* Non-trivial facts we won’t prove:

Average # of probes given A (in the limit as
TableSize D x) 1

— Unsuccessful search (intuitive):
1- A

— Successful search (less intuitive): 1 1
A 1- A
* Bottom line: unsuccessful bad (but not as bad as linear
probing), but successful is not nearly as bad
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Rehashing

As with array-based stacks/queues/lists, if table gets too
full, create a bigger table and copy everything

With chaining, we get to decide what “too full” means
— Keep load factor reasonable (e.g., < 1)?
— Consider average or max size of non-empty chains?

For open addressing, half-full is a good rule of thumb

New table size

— Twice-as-big is a good idea, except, uhm, that won’t be
prime!

— So go about twice-as-big

— Can have a list of prime numbers in your code since you
won’t grow more than 20-30 times



Rehashing

When the table gets too full, create a bigger table
(usually 2x as large) and hash all the items from the
original table into the new table.

* \When to rehash?
— Separate chaining: full (A = 1)
— Open addressing: half full (A = 0.5)
— When an insertion fails
— Some other threshold

» Cost of a single rehashing?
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Rehashing Picture

« Starting with table of size 2, double
when load factor > 1.

Bl hashes
I rehashes

1 23 45 67 89 1011121314 15 161718 1920 212324 25
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Amortized Analysis of Rehashing

» Cost of inserting n keys is < 3n

¢ suppose 2k + 1 <n < 2k
— Hashes =n
— Rehashes =2+ 22+ | +2k=2k*1_2
— Total =n + 2k*1 -2 < 3n

 Example
— n =33, Total = 33 + 64 —2 = 95 < 99
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Terminology

We and the book use the terms
— “chaining” or “separate chaining”
— “open addressing”

Very confusingly,
— “open hashing” is a synonym for “chaining”
— “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better,
most trees in CS grow upside-down

&
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Equal objects must hash the same

 The Java library (and your project hash table) make a very
important assumption that clients must satisfy...

If c.compare (a,b) == 0, then we require
h.hash(a) == h.hash (b)

* If you ever override equals

— You need to override hashCode also in a consistent way
— See Corelava book, Chapter 5 for other "gotchas" with equals
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Hashing Summary

-Hashing is one of the most important data structures.
Hashing has many applications where operations are
imited to find, insert, and delete.

— But what is the cost of doing, e.g., findMin?

Can use:

— Separate chaining (easiest)

— Open hashing (memory conservation, no linked list
management)

— Java uses separate chaining
Rehashing has good amortized complexity.

Also has a big data version to minimize disk
accesses: extendible hashing. (See book.)
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