CSE 373: Hash Tables

Hunter Zahn
Summer 2016
Announcements

• HW 2 Due tonight (11PM)
• HW 3 out tomorrow (due July 18th, 11PM)
Hash Tables

• Aim for constant-time (i.e., \(O(1) \)) **find**, **insert**, and **delete**
 – “On average” under some often-reasonable **assumptions**

• A hash table is an array of some fixed size

• Basic idea:
 - **hash function:** \(\text{index} = h(\text{key}) \)
 - **key space** (e.g., integers, strings)
 - **hash table**
 - \(0 \)
 - ...
 - TableSize – 1
Hash functions

An ideal hash function:

- Fast to compute
- “Rarely” hashes two “used” keys to the same index
 - Often impossible in theory but easy in practice
 - Will handle collisions later

key space (e.g., integers, strings)

![Diagram](hash_function.png)

Hash function: \[\text{index} = h(\text{key})\]

Table:

<table>
<thead>
<tr>
<th>hash table</th>
</tr>
</thead>
<tbody>
<tr>
<td>index = h(key)</td>
</tr>
<tr>
<td>TableSize – 1</td>
</tr>
</tbody>
</table>

UW CSE 373, Summer 2016
Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
– Ideas?
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10
Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing
and TableSize = 10
Separate Chaining

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td>12</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}}$$

← number of elements

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:

• Each “unsuccessful” find compares against λ items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining
Deleting an element using Separate Chaining
Alternative: Use empty space in the table

- Another simple idea: If $h(key)$ is already full,
 - try $(h(key) + 1) \mod \text{TableSize}$. If full,
 - try $(h(key) + 2) \mod \text{TableSize}$. If full,
 - try $(h(key) + 3) \mod \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>38</td>
<td>/</td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

• Another simple idea: If $h(\text{key})$ is already full,
 - try $(h(\text{key}) + 1) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 2) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 3) \mod \text{TableSize}$. If full...

• Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>19</td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

- Another simple idea: If \(h(\text{key}) \) is already full,
 - try \((h(\text{key}) + 1) \mod \text{TableSize} \). If full,
 - try \((h(\text{key}) + 2) \mod \text{TableSize} \). If full,
 - try \((h(\text{key}) + 3) \mod \text{TableSize} \). If full...

- Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>19</td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

• Another simple idea: If $h(\text{key})$ is already full,
 – try $(h(\text{key}) + 1) \% \text{TableSize}$. If full,
 – try $(h(\text{key}) + 2) \% \text{TableSize}$. If full,
 – try $(h(\text{key}) + 3) \% \text{TableSize}$. If full...

• Example: insert 38, 19, 8, 109, 10

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

• Another simple idea: If \(h(\text{key}) \) is already full,

 – try \((h(\text{key}) + 1) \mod \text{TableSize}\). If full,

 – try \((h(\text{key}) + 2) \mod \text{TableSize}\). If full,

 – try \((h(\text{key}) + 3) \mod \text{TableSize}\). If full...

• Example: insert 38, 19, 8, 109, 10
Open addressing

This is *one example* of open addressing

In general, **open addressing** means resolving collisions by trying a sequence of other positions in the table

Trying the next spot is called **probing**

– We just did **linear probing**
 * i^{th} probe was $(h(key) + i) \mod \text{TableSize}$

– In general have some **probe function** f and use $h(key) + f(i) \mod \text{TableSize}$

Open addressing does poorly with high load factor λ

– So want larger tables
– Too many probes means no more $O(1)$
Open Addressing

Write pseudocode for find(), assuming everything we’ve inserted is in the table.
Deletion in open addressing

• Brainstorm!
Deletion in Open Addressing

- $h(k) = k \mod 7$
- Linear probing
- Delete(23)
- Find(59)
- Insert(30)

Need to keep track of deleted items... leave a "marker"
Open Addressing

What will our pseudocode for find() look like if we’re using lazy deletion?
Other operations

insert finds an open table position using a probe function.

What about **find**?
- Must use same probe function to “retrace the trail” for the data.
- Unsuccessful search when reach empty position.

What about **delete**?
- **Must** use “lazy” deletion. Why?
 - Marker indicates “no data here, but don’t stop probing”
- Note: **delete** with chaining is plain-old list-remove.
(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe function is quick to compute (which is a good thing).

Tends to produce clusters, which lead to long probing sequences

- Called primary clustering
- Saw this starting in our example

[R. Sedgewick]
Analysis of Linear Probing

• **Trivial fact**: For any $\lambda < 1$, linear probing will find an empty slot
 – It is “safe” in this sense: no infinite loop unless table is full

• **Non-trivial facts we won’t prove:**
 Average # of probes given λ (in the limit as $\text{TableSize} \to \infty$)
 – Unsuccessful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right)
 \]
 – Successful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)
 \]

• This is pretty bad: need to leave sufficient empty space in the table to get decent performance
In a chart

- Linear-probing performance degrades rapidly as table gets full
 – (Formula assumes “large table” but point remains)

- By comparison, chaining performance is linear in λ and has no trouble with $\lambda > 1$
Quadratic probing

• We can avoid primary clustering by changing the probe function
 \[(h(key) + f(i)) \mod \text{TableSize}\]

• A common technique is quadratic probing:
 \[f(i) = i^2\]
 – So probe sequence is:
 • 0\(^{th}\) probe: \(h(key) \mod \text{TableSize}\)
 • 1\(^{st}\) probe: \((h(key) + 1) \mod \text{TableSize}\)
 • 2\(^{nd}\) probe: \((h(key) + 4) \mod \text{TableSize}\)
 • 3\(^{rd}\) probe: \((h(key) + 9) \mod \text{TableSize}\)
 • ...
 • \(i^{th}\) probe: \((h(key) + i^2) \mod \text{TableSize}\)

• Intuition: Probes quickly “leave the neighborhood”
Quadratic Probing Example

Table Size = 10
Insert:
89
18
49
58
79
Quadratic Probing Example

TableSize=10
Insert:
89
18
49
58
79
Quadratic Probing Example

Table Size = 10

Insert:
89
18
49
58
79
Quadratic Probing Example

<table>
<thead>
<tr>
<th>0</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
</tr>
</tbody>
</table>

TableSize=10
Insert:
89
18
49
58
79
Quadratic Probing Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
</tr>
</tbody>
</table>

TableSize=10

Insert:
89
18
49
58
79
Quadratic Probing Example

TableSize=10
Insert:
89
18
49
58
79
Another Quadratic Probing Example

TableSize = 7

Insert:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(76 % 7 = 6)
(40 % 7 = 5)
(48 % 7 = 6)
(5 % 7 = 5)
(55 % 7 = 6)
(47 % 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:
- 76 \ (% 7 = 6)
- 40 \ (% 7 = 5)
- 48 \ (% 7 = 6)
- 5 \ (% 7 = 5)
- 55 \ (% 7 = 6)
- 47 \ (% 7 = 5)

<table>
<thead>
<tr>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>
Another Quadratic Probing Example

TableSize = 7

Insert:
- 76 \quad (76 \% 7 = 6)
- 40 \quad (40 \% 7 = 5)
- 48 \quad (48 \% 7 = 6)
- 5 \quad (5 \% 7 = 5)
- 55 \quad (55 \% 7 = 6)
- 47 \quad (47 \% 7 = 5)
Another Quadratic Probing Example

Doh!: For all \(n \), \(((n^2) + 5) \mod 7\) is 0, 2, 5, or 6

- Excel shows takes “at least” 50 probes and a pattern
- Proof uses induction and \((n^2+5) \mod 7 = ((n-7)^2+5) \mod 7\)
 - In fact, for all \(c \) and \(k \), \((n^2+c) \mod k = ((n-k)^2+c) \mod k\)
From Bad News to Good News

• **Bad news:**
 – Quadratic probing can cycle through the same full indices, never terminating despite table not being full

• **Good news:**
 – If `TableSize` is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most $\text{TableSize}/2$ probes
 – So: If you keep $\lambda < \frac{1}{2}$ and `TableSize` is prime, no need to detect cycles
 – Optional
 • Also, slightly less detailed proof in textbook
 • Key fact: For prime T and $0 < i, j < T/2$ where $i \neq j$,
 \[(k + i^2) \mod T \neq (k + j^2) \mod T\] (i.e., no index repeat)
Quadratic Probing:
Success guarantee for $\lambda < \frac{1}{2}$

Assertion #1: If $T = \text{TableSize}$ is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in $\leq T/2$ probes

Assertion #2: For prime T and all $0 \leq i, j \leq T/2$ and $i \neq j$,

$$(h(K) + i^2) \mod T \neq (h(K) + j^2) \mod T$$

Assertion #3: Assertion #2 proves assertion #1.
Quadratic Probing:
Success guarantee for $\lambda < \frac{1}{2}$

We can prove assertion #2 by contradiction.
Suppose that for some $i \neq j$, $0 \leq i, j \leq T/2$, prime T:

$$(h(K) + i^2) \mod T = (h(K) + j^2) \mod T$$
Clustering reconsidered

• Quadratic probing does not suffer from primary clustering: no problem with keys initially hashing to the same neighborhood

• But it’s no help if keys initially hash to the same index
 – Called secondary clustering

• Can avoid secondary clustering with a probe function that depends on the key: double hashing...
Double hashing

Idea:
– Given two good hash functions h and g, it is very unlikely that for some key, $h(\text{key}) == g(\text{key})$
– So make the probe function $f(i) = i \times g(\text{key})$

Probe sequence:
• 0th probe: $h(\text{key}) \mod \text{TableSize}$
• 1st probe: $(h(\text{key}) + g(\text{key})) \mod \text{TableSize}$
• 2nd probe: $(h(\text{key}) + 2 \times g(\text{key})) \mod \text{TableSize}$
• 3rd probe: $(h(\text{key}) + 3 \times g(\text{key})) \mod \text{TableSize}$
• ...
• ith probe: $(h(\text{key}) + i \times g(\text{key})) \mod \text{TableSize}$

Detail: Make sure $g(\text{key})$ cannot be 0
Double Hashing Example

Table Size = 7
\(h(K) = K \% 7 \)
\(g(K) = 5 - (K \% 5) \)

Insert(76) \(76 \% 7 = 6 \) and \(5 - 76 \% 5 = \)
Insert(93) \(93 \% 7 = 2 \) and \(5 - 93 \% 5 = \)
Insert(40) \(40 \% 7 = 5 \) and \(5 - 40 \% 5 = \)
Insert(47) \(47 \% 7 = 5 \) and \(5 - 47 \% 5 = \)
Insert(10) \(10 \% 7 = 3 \) and \(5 - 10 \% 5 = \)
Insert(55) \(55 \% 7 = 6 \) and \(5 - 55 \% 5 = \)
Double-hashing analysis

• Intuition: Because each probe is “jumping” by \(g(\text{key}) \) each time, we “leave the neighborhood” and “go different places from other initial collisions”

• But we could still have a problem like in quadratic probing where we are not “safe” (infinite loop despite room in table)
 – It is known that this cannot happen in at least one case:
 • \(h(\text{key}) = \text{key} \mod p \)
 • \(g(\text{key}) = q - (\text{key} \mod q) \)
 • \(2 < q < p \)
 • \(p \) and \(q \) are prime
More double-hashing facts

• Assume “uniform hashing”
 – Means probability of \(g(\text{key1}) \% p == g(\text{key2}) \% p \)
 is \(1/p \)

• Non-trivial facts we won’t prove:
 Average # of probes given \(\lambda \) (in the limit as \(TableSize \to \infty \))
 – Unsuccessful search (intuitive):
 \[
 \frac{1}{1-\lambda}
 \]
 – Successful search (less intuitive):
 \[
 \frac{1}{\lambda \log_e \left(\frac{1}{1-\lambda} \right)}
 \]

• Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad
Rehashing

• As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything

• With chaining, we get to decide what “too full” means
 – Keep load factor reasonable (e.g., < 1)?
 – Consider average or max size of non-empty chains?

• For open addressing, half-full is a good rule of thumb

• New table size
 – Twice-as-big is a good idea, except, uhm, that won’t be prime!
 – So go about twice-as-big
 – Can have a list of prime numbers in your code since you won’t grow more than 20-30 times
Rehashing

When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

• When to rehash?
 – Separate chaining: full ($\lambda = 1$)
 – Open addressing: half full ($\lambda = 0.5$)
 – When an insertion fails
 – Some other threshold

• Cost of a single rehashing?
Rehashing Picture

- Starting with table of size 2, double when load factor > 1.
Amortized Analysis of Rehashing

• Cost of inserting n keys is $< 3n$

• suppose $2^k + 1 \leq n \leq 2^{k+1}$

 – Hashes = n

 – Rehashes = $2 + 2^2 + \ldots + 2^k = 2^{k+1} - 2$

 – Total = $n + 2^{k+1} - 2 < 3n$

• Example

 – $n = 33$, Total = $33 + 64 - 2 = 95 < 99$
Terminology

We and the book use the terms
- “chaining” or “separate chaining”
- “open addressing”

Very confusingly,
- “open hashing” is a synonym for “chaining”
- “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better, most trees in CS grow upside-down)
Equal objects must hash the same

• The Java library (and your project hash table) make a very important assumption that clients must satisfy…

\[
\text{If } c.\text{compare}(a,b) == 0, \text{ then we require}\n\text{h.hash}(a) == \text{h.hash}(b)\n\]

• If you ever override equals
 – You need to override hashCode also in a consistent way
 – See CoreJava book, Chapter 5 for other "gotchas" with equals
Hashing Summary

• Hashing is one of the most important data structures.
• Hashing has many applications where operations are limited to find, insert, and delete.
 – But what is the cost of doing, e.g., findMin?
• Can use:
 – Separate chaining (easiest)
 – Open hashing (memory conservation, no linked list management)
 – Java uses separate chaining
• Rehashing has good amortized complexity.
• Also has a big data version to minimize disk accesses: extendible hashing. (See book.)