CSE373: Data Structures & Algorithms

Lecture 6: Hash Tables

Hunter Zahn
Summer 2016
Motivating Hash Tables

For a dictionary with n key, value pairs

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>find</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked-list</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Unsorted array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Balanced tree</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Magic array</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Sufficient “magic”:
- Use key to compute array index for an item in $O(1)$ time [doable]
- Have a different index for every item [magic]
Motivating Hash Tables

• Let’s say you are tasked with counting the frequency of integers in a text file. You are guaranteed that only the integers 0 through 100 will occur:

For example: 5, 7, 8, 9, 9, 5, 0, 0, 1, 12
Result: 0 → 2 1 → 1 5 → 2 7 → 1 8 → 1 9 → 2

What structure is appropriate?
 Tree?
 List?
 Array?

2 1 2 2 1 1 2
0 1 2 3 4 5 6 7 8 9
Motivating Hash Tables

Now what if we want to associate name to phone number?

Suppose keys are first, last names
 – how big is the key space?

Maybe we only care about students
Hash Tables

- Aim for constant-time (i.e., \(O(1)\)) **find**, **insert**, and **delete**
 - “On average” under some often-reasonable **assumptions**

- A hash table is an array of some fixed size

- Basic idea:

 - **key space** (e.g., integers, strings)
 - **hash function**: \(\text{index} = h(\text{key})\)
 - **hash table**:
 - \(0\)
 - \(\ldots\)
 - \(\text{TableSize} - 1\)
A diagram showing a hash function with keys John Smith, Lisa Smith, and Sandra Dee. The hash function maps these keys to buckets with phone numbers 521-8976, 521-1234, and 521-9655.
Hash Tables vs. Balanced Trees

• In terms of a Dictionary ADT for just \textbf{insert}, \textbf{find}, \textbf{delete}, hash tables and balanced trees are just different data structures
 – Hash tables $O(1)$ on average (\emph{assuming} we follow good practices)
 – Balanced trees $O(\log n)$ worst-case

• Constant-time is better, right?
 – Yes, but you need “hashing to behave” (must avoid collisions)
 – Yes, but \textbf{findMin}, \textbf{findMax}, \textbf{predecessor}, and \textbf{successor} go from $O(\log n)$ to $O(n)$, \textbf{printSorted} from $O(n)$ to $O(n \log n)$
 • Why your textbook considers this to be a different ADT
Hash Tables

- There are m possible keys (m typically large, even infinite)
- We expect our table to have only n items
- n is much less than m (often written $n << m$)

Many dictionaries have this property

- Compiler: All possible identifiers allowed by the language vs. those used in some file of one program
- Database: All possible student names vs. students enrolled
- AI: All possible chess-board configurations vs. those considered by the current player
- ...
Hash functions

An ideal hash function:

- Fast to compute
- “Rarely” hashes two “used” keys to the same index
 - Often impossible in theory but easy in practice
 - Will handle collisions later

Key space (e.g., integers, strings)

TableSize – 1

Hash table

0

...
Simple Integer Hash Functions

- Key space $K = \text{integers}$
- TableSize = 7
- $h(K) = K \mod 7$

- Insert: 7, 18, 41

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td>41</td>
</tr>
</tbody>
</table>
Simple Integer Hash Functions

- key space $K = \text{integers}$
- $\text{TableSize} = 10$

- $h(K) = ??$

- **Insert:** 7, 18, 41, 34
 - What happens when we insert 44?
Aside: Properties of Mod

To keep hashed values within the size of the table, we will generally do:

\[h(K) = \text{function}(K) \% \text{TableSize} \]

(In the previous examples, function(K) = K.)

Useful properties of mod:

- \((a + b) \% c = [(a \% c) + (b \% c)] \% c\)
- \((a \cdot b) \% c = [(a \% c) \cdot (b \% c)] \% c\)
- \(a \% c = b \% c \rightarrow (a - b) \% c = 0\)
Designing Hash Functions

Often based on **modular hashing:**

\[h(K) = f(K) \mod P \]

P is typically the TableSize

P is often chosen to be prime:

- Reduces likelihood of collisions due to patterns in data
- Is useful for guarantees on certain hashing strategies (as we’ll see)

Equivalent objects MUST hash to the same location
Designing Hash Functions:

- $h(K) = f(K) \% P$
 - $f(K) = ??$
Some String Hash Functions

key space = strings

\[K = s_0 \ s_1 \ s_2 \ldots \ s_{m-1} \] (where \(s_i \) are chars: \(s_i \in [0, 128] \))

1. \(h(K) = s_0 \ % \ TableSize \) \n \[H(“batman”) = H(“ballgame”) \]

2. \(h(K) = \left(\sum_{i=0}^{m-1} s_i \right) \ % \ TableSize \) \n \[H(“spot”) = H(“pots”) \]

3. \(h(K) = \left(\sum_{i=0}^{m-1} s_i \cdot 37^i \right) \ % \ TableSize \)
What to hash?

We will focus on the two most common things to hash: *ints* and *strings*

– For objects with several fields, usually best to have most of the “identifying fields” contribute to the hash to avoid collisions

– Example:

```java
class Person {
    String first; String middle; String last;
    Date birthdate;
}
```

– An inherent trade-off: hashing-time vs. collision-avoidance
 * Bad idea(?)*: Use only first name
 * Good idea(?)*: Use only middle initial? Combination of fields?
 * Admittedly, what-to-hash-with is often unprincipled 😞
Deep Breath

• Recap
Hash Tables: Review

- Aim for constant-time (i.e., $O(1)$) find, insert, and delete
 - “On average” under some reasonable assumptions
- A hash table is an array of some fixed size
 - But growable as we’ll see

![Hash Table Diagram]

Client

E

hash table library

int

Collision?

TableSize – 1
Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
 – Ideas?
Separate Chaining

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing
and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing and TableSize = 10
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}}$$

← number of elements

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by random finds, then on average:

• Each “unsuccessful” find compares against λ items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining