CSE373: Data Structures & Algorithms
Lecture 6: Hash Tables

Hunter Zahn
Summer 2016

Summer 2016 CSE373: Data Structures & Algorithms

Motivating Hash Tables

For a dictionary with n key, value pairs

insert find delete
 Unsorted linked-list 0(1) O(n) O(n)
* Unsorted array 0(1) O(n) O(n)
e Sorted linked list O(n) O(n) O(n)
e Sorted array O(n) O(logn) O(n)
* Balanced tree O(logn) O(logn) O(logn)
 Magic array O(1) O(1) O(1)

Sufficient “magic”:
— Use key to compute array index for an item in O(1) time [doable]
— Have a different index for every item [magic]

CSE373: Data Structures &

Summer 2016 2 Algorithms

Motivating Hash Tables

* Let’s say you are tasked with counting the frequency of
integers in a text file. You are guaranteed that only the
integers 0 through 100 will occur:

For example:5,7,8,9,9,5,0,0,1, 12
Result:0>2 121 522 721 8->1 9->2

What structure is appropriate?
Tree?
List?

amaye 2 [[[2] a2

CSE373: Data Structures &

Summer 2016 3 Algorithms

Motivating Hash Tables

Now what if we want to associate name to phone
number?

Suppose keys are first, last names
— how big is the key space?

Maybe we only care about students

Hash Tables

e Aim for constant-time (i.e., O(1)) £ind, insert, and delete

— “On average” under some often-reasonable assumptions

* A hash table is an array of some fixed size

e Basicidea:

key space (e.g., integers, strings)

Summer 2016

hash table
0
hash function:
index = h(key)
>
TableSize -1

CSE373: Data Structures &

Algorithms

Summer 2016

hash
keys function

00

 John Smith o
02

 Lisa smith o

buckets

521-8976

521-1234

521-9655

Sandra Dee .
'_’-
15

CSE373: Data Structures & Algorithms

Hash Tables vs. Balanced Trees

* |nterms of a Dictionary ADT for just insert, £ind,
delete, hash tables and balanced trees are just different
data structures

— Hash tables O(1) on average (assuming we follow good practices)

— Balanced trees O(1og n) worst-case

* Constant-time is better, right?
— Yes, but you need “hashing to behave” (must avoid collisions)

— Yes, but £findMin, findMax, predecessor, and
successor go from O(logn)to O(n), printSorted from
O(n) to O(n 1og n)

* Why your textbook considers this to be a different ADT

Hash Tables

 There are m possible keys (m typically large, even infinite)
* We expect our table to have only n items
* nis much less than m (often written n << m)

Many dictionaries have this property

— Compiler: All possible identifiers allowed by the language vs.
those used in some file of one program

— Database: All possible student names vs. students enrolled

— Al: All possible chess-board configurations vs. those considered by
the current player

CSE373: Data Structures &

Summer 2016 8 Algorithms

Hash functions

An ideal hash function:
* Fastto compute

* “Rarely” hashes two “used” keys to the same index hash table
— Often impossible in theory but easy in practice

— Will handle collisions later 0

hash function:
index = h(key)

>

TableSize -1

key space (e.g., integers, strings)

CSE373: Data Structures &

Summer 2016 9 Algorithms

Simple Integer Hash Functions

* key space K = integers

e TableSize =7 0 7
1

e h(K)=K% 7 0)
3

* |nsert: /7, 18, 41
4 18
5
6 41

Summer 2016 CSE373: Data Structures & Algorithms

10

Simple Integer Hash Functions

* key space K = integers

e TableSize =10

h(K) =?7?

* |Insert: /7, 18, 41, 34

— What happens when we insert 447

Summer 2016

CSE373: Data Structures & Algorithms

=)

o 0 1 SN Nt ha W N -

41

34

18

11

Aside: Properties of Mod

To keep hashed values within the size of the table, we will
generally do:

h(K) = function(K) % TableSize

(In the previous examples, function(K) = K.)

Useful properties of mod:
—(a+b)%c=[(a%c)+(b%c)]%c
—(ab)%c=[(a%c)(b%c)]%c
—a%c=b%c >(a—-b)%c=0

12

Designing Hash Functions

Often based on modular hashing:
h(K) = f(K) % P
P is typically the TableSize

P is often chosen to be prime:
— Reduces likelihood of collisions due to patterns in data

— Is useful for guarantees on certain hashing strategies
(as we’ll see)

Equivalent objects MUST hash to the same location

13

Designing Hash Functions:

* h(K) = f(K) % P
— f(K) = ??

Summer 2016 CSE373: Data Structures & Algorithms

14

Some String Hash Functions

key space = strings

K=575;S,...5 .1 (Where s, are chars: s, € [0, 128])

1. h(K) =S, % TableSize H(“batman”) = H(“ballgame”)
m—1

2. h(K)= (s,)% TableSize H(“spot”) = H(“pots”)
i=0

3. h(K) = (mz_si-ﬁ")%TableSize

i=0

Summer 2016 CSE373: Data Structures & Algorithms

15

What to hash?

We will focus on the two most common things to hash: ints
and strings

— For objects with several fields, usually best to have most of
the “identifying fields” contribute to the hash to avoid

collisions

— Example:

class Person { _ _ _
String first; String middle; String
last;
Date birthdate;
}

— Aninherent trade-off: hashing-time vs. collision-avoidance
« Badidea(?): Use only first name
e Good idea(?): Use only middle initial? Combination of fields?
« Admittedly, what-to-hash-with is often unprincipled ®

* Recap

Deep Breath

CSE373: Data Structures & Algorithms

17

Hash Tables: Review

* Aim for constant-time (i.e., O(1)) £ind, insert, and
delete

— “On average” under some reasonable assumptions

: . . hash table
* A hash table is an array of some fixed size

— But growable as we’ll see 0

client hash table library

collision? collision

[mmmes) |nt Emmmes) table-index EEmmmmmw)

resolution

TableSize -1

CSE373: Data Structures &

Summer 2016 18 Algorithms

Collision resolution

Collision:

When two keys map to the same location in the
hash table

We try to avoid it, but number-of-keys exceeds
table size

So hash tables should support collision resolution
— |ldeas?

CSE373: Data Structures &

Summer 2016 19 Algorithms

O 0 3 O D b~ W N —= O

~ | T~ | T~ | T~ | T] - | Y~ |~]~ ~

Separate Chaining

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D b~ W N —= O

Separate Chaining

> 10

/

~ | T~ | T~ | Y~ | Y~ |~ | ~ |~~~

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D b~ W N —= O

Separate Chaining

> 10

/

~ | T~ | T~ | | Y~ | | ~

»22

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D b~ W N —= O

Separate Chaining

»10| /

»22| /

~ | | | ~

107 /

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D b~ W N —= O

Separate Chaining

> 10

/

~ | | | ~

»12

»22

107

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D b~ W N —= O

Separate Chaining

A 4

10| /

~ | | | ~

A 4

42

A 4

12

Chaining:
All keys that map to the same
table location are kept in a list

A 4

107/

A 4

22| /| (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

More rigorous chaining analysis

Definition: The load factor, A, of a hash table is
N <— number of elements

B TableSize

A

Under chaining, the average number of elements per bucket is A

So if some inserts are followed by random finds, then on average:

e Each “unsuccessful” £ind compares against 4 items

So we like to keep A fairly low (e.g., 1 or 1.5 or 2) for chaining

Summer 2016 26 CSE373: Data Structu.res &
Algorithms

