Announcements

- HW 1 due tonight, 11PM
- HW 2 out: due Friday, July 8th at 11PM

Lilian and Dan holding office hours today

Two cases to go

Unfortunately, single rotations are not enough for insertions in the **left-right** subtree or the **right-left** subtree

Simple example: insert(1), insert(6), insert(3)

First wrong idea: single rotation like we did for left-left

Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

 Second wrong idea: single rotation on the child of the unbalanced node

CSE373: Data Structures & Algorithms

Sometimes two wrongs make a right

- First idea violated the BST property
- Second idea didn't fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)
- Double rotation:
 - 1. Rotate problematic child and grandchild
 - 2. Then rotate between self and new child

CSE373: Data Structures & Algorithms

The general right-left case

Algorithms

Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
 - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:

- 1) Move c to grandparent's position
- 2) Put a, b, X, U, V, and Z in the only legal positions for a BST

Summer 2016

CSE373: Data Structures & Algorithms

The last case: left-right

- Mirror image of right-left
 - Again, no new concepts, only new code to write

Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
 - Node's left-left grandchild is too tall (left-left single rotation)
 - Node's left-right grandchild is too tall (left-right double rotation)
 - Node's right-left grandchild is too tall (right-left double rotation)
 - Node's right-right grandchild is too tall (right-right double rotation)
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
 - So all ancestors are now balanced

Now efficiency

- Worst-case complexity of find: O(log n)
 - Tree is balanced
- Worst-case complexity of insert: O(log n)
 - Tree starts balanced
 - A rotation is O(1) and there's an $O(\log n)$ path to root
 - (Same complexity even without one-rotation-is-enough fact)
 - Tree ends balanced
- Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle **delete**...

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. All operations logarithmic worst-case because trees are always balanced
- 2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

- 1. Difficult to program & debug [but done once in a library!]
- 2. More space for height field
- 3. Asymptotically faster but rebalancing takes a little time
- 4. Most large searches are done in database-like systems on disk and use other structures (e.g., *B*-trees, a data structure in the text)
- 5. If *amortized* (later, I promise) logarithmic time is enough, use splay trees (also in text)

Summer 2016

Dictionary Runtimes: More motivation

For a **dictionary** with *n* key, value pairs

		insert	find	delete
•	Unsorted linked-list	O(1)	O(n)	O(n)
•	Unsorted array	O(1)	O(n)	O(n)
•	Sorted linked list	O(n)	O(n)	O(n)
•	Sorted array	O(n)	O(log n)	O(n)
•	Balanced tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
•	Magic array	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)

Sufficient "magic":

- Use key to compute array index for an item in O(1) time [doable]
- Have a different index for every item [magic]

CSE373: Data Structures & Algorithms

Lecture 6: Hash Tables

Hunter Zahn Summer 2016

Motivating Hash Tables

For a **dictionary** with *n* key, value pairs

		insert	find	delete
•	Unsorted linked-list	<i>O</i> (1)	O(n)	O(n)
•	Unsorted array	<i>O</i> (1)	O(n)	O(n)
•	Sorted linked list	O(n)	O(n)	O(n)
•	Sorted array	O(n)	$O(\log n)$) O(n)
•	Balanced tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
•	Magic array	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)

Sufficient "magic":

- Use key to compute array index for an item in O(1) time [doable]
- Have a different index for every item [magic]

Motivating Hash Tables

 Let's say you are tasked with counting the frequency of integers in a text file. You are guaranteed that only the integers 0 through 100 will occur:

For example: 5, 7, 8, 9, 9, 5, 0, 0, 1, 12

Result: $0 \rightarrow 2$ $1 \rightarrow 1$ $5 \rightarrow 2$ $7 \rightarrow 1$ $8 \rightarrow 1$ $9 \rightarrow 2$

What structure is appropriate?

Tree?

List?

Array?

Motivating Hash Tables

Now what if we want to associate name to phone number?

Suppose keys are first, last names

– how big is the key space?

Maybe we only care about students

Hash Tables

- Aim for constant-time (i.e., O(1)) find, insert, and delete
 - "On average" under some often-reasonable assumptions
- A hash table is an array of some fixed size

key space (e.g., integers, strings)

• Basic idea:

hash function:
index = h(key)
...

CSE373: Data Structures & Algorithms

TableSize -1

hash table

Hash Tables vs. Balanced Trees

- In terms of a Dictionary ADT for just insert, find, delete, hash tables and balanced trees are just different data structures
 - Hash tables O(1) on average (assuming we follow good practices)
 - Balanced trees $O(\log n)$ worst-case
- Constant-time is better, right?
 - Yes, but you need "hashing to behave" (must avoid collisions)
 - Yes, but findMin, findMax, predecessor, and successor go from $O(\log n)$ to O(n), printSorted from O(n) to $O(n \log n)$
 - Why your textbook considers this to be a different ADT

Hash Tables

- There are m possible keys (m typically large, even infinite)
- We expect our table to have only *n* items
- n is much less than m (often written n << m)

Many dictionaries have this property

- Compiler: All possible identifiers allowed by the language vs. those used in some file of one program
- Database: All possible student names vs. students enrolled
- AI: All possible chess-board configurations vs. those considered by the current player

– ...

Hash functions

An ideal hash function:

- Fast to compute
- "Rarely" hashes two "used" keys to the same index
 - Often impossible in theory but easy in practice
 - Will handle collisions later

key space (e.g., integers, strings)

hash table

0

Simple Integer Hash Functions

- key space K = integers
- TableSize = 7
- h(K) = K % 7
- Insert: 7, 18, 41

0	7
1	
2	
2 3	
4	18
5	
6	41

Simple Integer Hash Functions

- key space K = integers
- TableSize = 10

• h(K) = ??

- Insert: 7, 18, 41, 34
 - What happens when we insert 44?

Aside: Properties of Mod

To keep hashed values within the size of the table, we will generally do:

(In the previous examples, function(K) = K.)

Useful properties of mod:

$$- (a + b) \% c = [(a \% c) + (b \% c)] \% c$$

$$- (a b) \% c = [(a \% c) (b \% c)] \% c$$

$$- a \% c = b \% c \rightarrow (a - b) \% c = 0$$

Designing Hash Functions

Often based on modular hashing:

$$h(K) = f(K) \% P$$

P is typically the TableSize

P is often chosen to be prime:

- Reduces likelihood of collisions due to patterns in data
- Is useful for guarantees on certain hashing strategies (as we'll see)

Equivalent objects MUST hash to the same location

Some String Hash Functions

key space = strings

$$K = S_0 S_1 S_2 ... S_{m-1}$$
 (where S_i are chars: $S_i \in [0, 128]$)

1.
$$h(K) = s_0 \%$$
 TableSize

2.
$$h(K) = \left(\sum_{i=0}^{m-1} S_i\right)\%$$
 TableSize

3.
$$h(K) = \left(\sum_{i=0}^{m-1} s_i \cdot 37^i\right)\%$$
 TableSize

What to hash?

We will focus on the two most common things to hash: *ints* and *strings*

- For objects with several fields, usually best to have most of the "identifying fields" contribute to the hash to avoid collisions
- Example:

```
class Person {
    String first; String middle; String
last;
    Date birthdate;
}
```

- An inherent trade-off: hashing-time vs. collision-avoidance
 - Bad idea(?): Use only first name
 - Good idea(?): Use only middle initial? Combination of fields?
 - Admittedly, what-to-hash-with is often unprincipled ⊗

Deep Breath

Recap

Hash Tables: Review

- Aim for constant-time (i.e., O(1)) find, insert, and delete
 - "On average" under some reasonable assumptions
- A hash table is an array of some fixed size
 - But growable as we'll see

client

hash table library

collision?

collision

resolution

Table Circ. 4

hash table

0

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

– Ideas?

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:

More rigorous chaining analysis

Definition: The load factor, λ , of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ

So if some inserts are followed by *random* finds, then on average:

• Each "unsuccessful" find compares against λ items

So we like to keep λ fairly low (e.g., 1 or 1.5 or 2) for chaining