Announcements

* HW 1 due tonight, 11PM
 HW 2 out: due Friday, July 8t at 11PM

 Lilian and Dan holding office hours today

Two cases to go

Unfortunately, single rotations are not enough for
insertions in the left-right subtree or the right-left
subtree

Simple example: insert(l), insert(6), insert(3)
— First wrong idea: single rotation like we did for left-left

: CSE373: Data Structures &

Summer 2016 Algorithms

Two cases to go

Unfortunately, single rotations are not enough for
insertions in the left-right subtree or the right-left
subtree

Simple example: insert(l), insert(6), insert(3)

— Second wrong idea: single rotation on the child of the
unbalanced node

CSE373: Data Structures &

Summer 2016 Algorithms

Sometimes two wrongs make a right

* First idea violated the BST property
* Second idea didn’t fix balance

e But if we do both single rotations, starting with the
second, it works! (And not just for this example.)

 Double rotation:
1. Rotate problematic child and grandchild
2. Then rotate between self and new child

Intuition: 3 must become root

Summer 2016 CSE373: Data Structu.res &
Algorithms

The general right-left case

Rotation 1:

b.left = c.right

c.right

a.right
Rotation 2:

a.right
c.left = a
root = c

i
(@)

I
@
r—
(0]
_h
f_'-

CSE373: Data Structures &
Algorithms

Summer 2016

Comments

* Like in the left-left and right-right cases, the height of the
subtree after rebalancing is the same as before the insert

— So no ancestor in the tree will need rebalancing
* Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:

1) Move c to grandparent’s position
2) Puta, b, X, U, V, and Z in the only legal positions for a BST

Summer 2016 CSE373: Data Structures & Algorithms

The last case: left-right

* Mirror image of right-left
— Again, no new concepts, only new code to write

CSE373: Data Structures &

Summer 2016 Algorithms

Insert, summarized

Insert as in a BST

Check back up path for imbalance, which will be 1 of 4 cases:
— Node’s left-left grandchild is too tall (left-left single rotation)
— Node’s left-right grandchild is too tall (left-right double rotation)
— Node’s right-left grandchild is too tall (right-left double rotation)
— Node’s right-right grandchild is too tall (right-right double rotation)

Only one case occurs because tree was balanced before insert

After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion

— So all ancestors are now balanced

Now efficiency

* Worst-case complexity of £ind: O(1og n)
— Tree is balanced

* Worst-case complexity of insert: O(log n)
— Tree starts balanced
— Arrotation is O(1) and there’s an O(1og n) path to root
— (Same complexity even without one-rotation-is-enough fact)
— Tree ends balanced

* Worst-case complexity of buildTree: O(n 1og n)

Takes some more rotation action to handle delete...

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of
insert anddelete

Arguments against AVL trees:

Difficult to program & debug [but done once in a library!]

More space for height field

Asymptotically faster but rebalancing takes a little time

Most large searches are done in database-like systems on disk and use
other structures (e.g., B-trees, a data structure in the text)

5. If amortized (later, | promise) logarithmic time is enough, use splay trees
(also in text)

W e

Summer 2016 CSE373: Data Structures & Algorithms

Dictionary Runtimes: More
motivation

For a dictionary with n key, value pairs

insert find delete
* Unsorted linked-list O(1) O(n) O(n)
* Unsorted array O(1) O(n) O(n)
e Sorted linked list O(n) O(n) O(n)
e Sorted array O(n) O(logn) O(n)
* Balanced tree O(logn) O(logn) O(logn)
 Magic array O(1) O(1) O(1)

Sufficient “magic”:
— Use key to compute array index for an item in O(1) time [doable]
— Have a different index for every item [magic]

CSE373: Data Structures &

Fall 2015 11 Algorithms

CSE373: Data Structures & Algorithms
Lecture 6: Hash Tables

Hunter Zahn
Summer 2016

summer 2016 Thanks to Kevin Quinfy:and Dart' Grossmarn for slide materials

Motivating Hash Tables

For a dictionary with n key, value pairs

insert find delete
* Unsorted linked-list 0(1) O(n) O(n)
* Unsorted array 0(1) O(n) O(n)
e Sorted linked list O(n) O(n) O(n)
 Sorted array O(n) O(logn) O(n)
* Balanced tree O(logn) O(logn) O(logn)
 Magic array O(1) O(1) O(1)

Sufficient “magic”:
— Use key to compute array index for an item in O(1) time [doable]
— Have a different index for every item [magic]

Fall 2015 13 CSE373: Data Structu.res &
Algorithms

Motivating Hash Tables

* Let’s say you are tasked with counting the frequency of
integers in a text file. You are guaranteed that only the
integers O through 100 will occur:

For example:5,7,8,9,9,5,0,0,1, 12
Result:0>2 121 522 721 8->1 9->2

What structure is appropriate?

Tree?
List?

amaye 2 | e]2

o 1 2 3 4 5 6 7 8 9

CSE373: Data Structures &

Fall 2015 14 Algorithms

Motivating Hash Tables

Now what if we want to associate name to phone
number?

Suppose keys are first, last names
— how big is the key space?

Maybe we only care about students

15

Hash Tables

* Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some often-reasonable assumptions

* A hash table is an array of some fixed size

hash table
* Basicidea: 0
hash function:
index = h(key)
>
key space (e.g., integers, strings) TableSize —1

CSE373: Data Structures &

Fall 2015 16 Algorithms

hash
keys function buckets

00

01 | 521-8976
ST 02 | 521-1234
 Usa smith "

521-9655

' Sandra Dee -
_...
15

Hash Tables vs. Balanced Trees

* |nterms of a Dictionary ADT for just insert, £ind,
delete, hash tables and balanced trees are just different

data structures
— Hash tables O(1) on average (assuming we follow good practices)

— Balanced trees O(1og n) worst-case

* Constant-time is better, right?
— Yes, but you need “hashing to behave” (must avoid collisions)
— Yes, but £indMin, findMax, predecessor, and
successor go from O(logn)to O(n), printSorted from
O(n) to O(n 1og n)
* Why your textbook considers this to be a different ADT

Hash Tables

 There are m possible keys (m typically large, even infinite)
 We expect our table to have only n items
* nis much less than m (often written n << m)

Many dictionaries have this property

— Compiler: All possible identifiers allowed by the language vs.
those used in some file of one program

— Database: All possible student names vs. students enrolled

— Al: All possible chess-board configurations vs. those considered by
the current player

CSE373: Data Structures &

Fall 2015 19 Algorithms

Hash functions

An ideal hash function:
* Fastto compute
 “Rarely” hashes two “used” keys to the same index hash table

— Often impossible in theory but easy in practice

— Will handle collisions later 0

hash function:
index = h(key)

>

TableSize -1

key space (e.g., integers, strings)

CSE373: Data Structures &

Fall 2015 20 Algorithms

Simple Integer Hash Functions

key space K = integers

TableSize =7
h(K) =K% 7

Insert: /7, 18, 41

18

SN N A W N = O

41

UW CSE 332, Spring 2016

21

Simple Integer Hash Functions

key space K = integers
TableSize = 10

h(K) = ??

Insert: /7, 18, 41, 34
— What happens when we insert 447

=)

o 0 1 &N N A W N -

41

34

18

22

Aside: Properties of Mod

To keep hashed values within the size of the table, we will
generally do:

h(K) = function(K) % TableSize

(In the previous examples, function(K) = K.)

Useful properties of mod:
—(a+b)%c=[(a%c)+(b%c)]%c
—(ab)%c=[(a%c)(b%c)]%c
—a%c=b%c >(a—-b)%c=0

23

Designing Hash Functions

Often based on modular hashing:
h(K) = f(K) % P
P is typically the TableSize

P is often chosen to be prime:
— Reduces likelihood of collisions due to patterns in data

— |s useful for guarantees on certain hashing strategies
(as we’ll see)

Equivalent objects MUST hash to the same location

24

Some String Hash Functions

key space = strings

1.

2.

3.

K=575,S,...S .1 (Where s, are chars: s, € [0, 128])

h(K) = So % TableSize H(“batman”) = H(“ballgame”)

m—1

h(K) = (2 s,)% TableSize H(“spot”) = H(“pots”)

h(K) = (mz_si-ﬁ")% TableSize

I=

25

What to hash?

We will focus on the two most common things to hash: ints
and strings

— For objects with several fields, usually best to have most of
the “identifying fields” contribute to the hash to avoid

collisions

— Example:

class Person ({ _ _ _
String first; String middle; String
last;
Date birthdate;
}

— Aninherent trade-off: hashing-time vs. collision-avoidance
« Badidea(?): Use only first name
e Good idea(?): Use only middle initial? Combination of fields?
« Admittedly, what-to-hash-with is often unprincipled ®

Deep Breath

* Recap

Hash Tables: Review

e Aim for constant-time (i.e., O(1)) £ind, insert, and
delete

— “On average” under some reasonable assumptions

* A hash tableis an array of some fixed size
— But growable as we’ll see

client

)

Fall 2013

hash table library

int Emmms) table-index

28

collision?

hash table

0

collision
resolution

TableSize -1

CSE373: Data Structures &
Algorithms

Collision resolution

Collision:

When two keys map to the same location in the
hash table

We try to avoid it, but number-of-keys exceeds
table size

So hash tables should support collision resolution
— |ldeas?

CSE373: Data Structures &

Fall 2013 29 Algorithms

O 0 3 O D K~ W N —= O

I T S e e O I O e N

Separate Chaining

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D K~ W N —= O

Separate Chaining

> 10

/

~ | T~ | T~ | T~ |~ | Y~]~ |] >~

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D K~ W N —= O

Separate Chaining

> 10

/

~] T~ | T~ | T~ | | |~

»22

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D K~ W N —= O

Separate Chaining

10| /

S~ T~ | T~ | ™~

»22| /

107 /

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D K~ W N —= O

Separate Chaining

> 10

/

S~ T~ | T~ | ™~

»12

»22

>107

Chaining:
All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize =10

O 0 3 O D K~ W N —= O

Separate Chaining

/

Chaining:
All keys that map to the same

S~ T~ | T~ | ™~

12

22

table location are kept in a list

/] (a.k.a. a“chain” or “bucket”)

>107

As easy as it sounds

Example:
insert 10, 22, 107, 12,42
with mod hashing
and TableSize =10

More rigorous chaining analysis

Definition: The load factor, A, of a hash table is
N <— number of elements

A=
TableSize

Under chaining, the average number of elements per bucket is A

So if some inserts are followed by random finds, then on average:
* Each “unsuccessful” £ind compares against A items

So we like to keep A fairly low (e.g., 1 or 1.5 or 2) for chaining

Fall 2013 36 CSE373: Data Structu.res &
Algorithms

