
Announcements 

•  Lilian’s office hours rescheduled: Fri 2-4pm 
•  HW2 out tomorrow, due Thursday, 7/7 
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Deletion in BST 
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Why might deletion be harder than insertion? 
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Deletion 
•  Removing an item disrupts the tree structure 

•  Basic idea: find the node to be removed, then  
“fix” the tree so that it is still a binary search tree 

•  Three cases: 
–  Node has no children (leaf) 
–  Node has one child 
–  Node has two children 
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Deletion – The Leaf Case 
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delete(17) 
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Deletion – The One Child Case 

20 9 2 

15 5 
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delete(15) 
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Deletion – The Two Child Case 

30 9 2 

20 5 

12 

7 

What can we replace 5 with? 
 
 

10 

delete(5) 
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Deletion – The Two Child Case 
Idea: Replace the deleted node with a value guaranteed to be 

between the two child subtrees 
 
Options: 
•  successor    from right subtree: findMin(node.right) 
•  predecessor   from left subtree:   
findMax(node.left) 
–  These are the easy cases of predecessor/successor 

 
Now delete the original node containing successor or 

predecessor 
•  Leaf or one child case – easy cases of delete! 
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Lazy Deletion 

•  Lazy deletion can work well for a BST 
– Simpler 
– Can do “real deletions” later as a batch 
– Some inserts can just “undelete” a tree node 

•  But 
– Can waste space and slow down find operations 
– Make some operations more complicated: 

•  How would you change findMin and findMax? 
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BuildTree for BST 
•  Let’s consider buildTree 

–  Insert all, starting from an empty tree 

•  Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 

–  If inserted in given order,  
what is the tree?   
 

–  What big-O runtime for  
this kind of sorted input? 

–  Is inserting in the reverse order  
 any better? 

 

1 

2 

3 

O(n2) 
Can we do better? 
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BuildTree for BST 
•  Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST 

•  What we if could somehow re-arrange them 
– median first, then left median, right median, etc. 
– 5, 3, 7, 2, 1, 4, 8, 6, 9   

–  What tree does that give us?  
 

–  What big-O runtime? 8 4 2 

7 3 

5 

9 

6 

1 O(n log n), awesome! 
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Unbalanced BST 

•  Balancing a tree at build time is insufficient, as 
sequences of operations can eventually transform 
that carefully balanced tree into the dreaded list 

•  At that point, everything is 
O(n) and nobody is happy 
– find 
– insert 
– delete 

1 

2 
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Balanced BST 
Observation 
•  BST: the shallower the better! 
•  For a BST with n nodes inserted in arbitrary order 

–  Average height is O(log n) – see text for proof 
–  Worst case height is O(n) 

•  Simple cases, such as inserting in key order, lead to 
 the worst-case scenario 

Solution:  Require a Balance Condition that 
1.  Ensures depth is always O(log n)     – strong enough! 
2.  Is efficient to maintain              – not too strong! 
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Potential Balance Conditions 
1.  Left and right subtrees of 

the root 
have equal number of 
nodes 

 
2.  Left and right subtrees of 

the root 
have equal height 

Too weak! 
Height mismatch example: 

Too weak! 
Double chain example: 
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Potential Balance Conditions 
3.  Left and right subtrees of every node 

have equal number of nodes 

4.  Left and right subtrees of every node 
have equal height 

Too strong! 
Only perfect trees (2n – 1 nodes) 

Too strong! 
Only perfect trees (2n – 1 nodes) 
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The AVL Balance Condition 
Left and right subtrees of every node 
have heights differing by at most 1 
 
Definition:  balance(node) = height(node.left) – 

height(node.right) 
 
AVL property:   for every node x,   –1 ≤ balance(x) ≤ 1    

•  Ensures small depth 
–  Will prove this by showing that an AVL tree of height 

h must have a number of nodes exponential in h 

•  Efficient to maintain 
–  Using single and double rotations 
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The AVL Tree Data Structure 

4 
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Structural properties 
1.  Binary tree property 
2.  Balance property: 

balance of every node is 
between -1 and 1 

Result: 
Worst-case depth is 

O(log n)  
 

Ordering property 
–  Same as for BST 

15 
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Definition:  balance(node) = height(node.left) – height(node.right) 
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An AVL tree? 
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Balance = 1 
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Height = 2 
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Height = 3 
Balance = 2 

Height = 4 
Balance = 2 

An AVL tree? 
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No! 



The shallowness bound 
Let S(h) = the minimum number of nodes in an 

AVL tree of height h 
–  If we can prove that S(h) grows exponentially in h, then 

a tree with n nodes has a logarithmic height 

•  Step 1: Define S(h) inductively using AVL property 
–  S(-1)=0, S(0)=1, S(1)=2 
– For h ≥ 1, S(h) = 1+S(h-1)+S(h-2) 

•  Step 2: Bound S(h) 
– Using everybody’s favorite: Induction! 

h-1 h-2 

h 

Summer 2016 CSE373: Data Structures & 
Algorithms 



Fibonacci Numbers 

•  Sequence of numbers where each number is 
the sum of the preceding two numbers: 
– 0, 1, 1, 2, 3, 5, 8, … 
F(0) = 0 
F(1) = 1 
F(n+1) = F(n-1) + F(n) 
 
Grows exponentially 
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S(h) and F(h) 

h  0 1 2 3 4 5 6 7 8 9 
S(h) 1 2 4 7 12 20 33 54 88 143 
F(h) 0 1 1 2 3 5 8 13 21 34 
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h  0 1 2 3 4 5 6 7 8 9 
S(h) 1 2 4 7 12 20 33 54 88 143 
F(h+3) 2 3 5 8 13 21 34 55 89 144 

S(h) appears to be equal to F(h+3) - 1 



The proof 
Let P(h) be S(h) == F(h+3)-1. We will prove this for all h >= 0 
Base cases: 

S(0) = 1   F(0 + 3) – 1 = 2 – 1 = 1 
S(1) = 2   F(1 + 3) – 1 = 3 – 1 = 2 

Inductive Hypothesis: 
Assume P(k) for an arbitrary k > 1. 
P(k): S(k) == F(k+3)-1 
Inductive Step:  
S(k+1) = S(k-1) + S(k) + 1 

   =  [F((k-1) + 3) – 1] + [F(k+3) – 1] + 1    I.H. 
   =  F((k-1) + 3) + F(k + 3) – 1      simplify 
   =  F((k+1) + 3) – 1        def of F 

P(k) ! P(k+1) 
Conclusion: 
We have proven by induction that P(h) holds for all h >= 0. 
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Remember: 
1)  S(-1)=0, S(0)=1, S(1)=2 
2)  For h ≥ 1, S(h) = 1+S(h-1)+S(h-2) 

F(h + 1) = F(h - 1) + F(h) 
 
 

The minimum number of nodes in an AVL tree grows exponentially with respect to the height! 
Therefore, the height grows logarithmically w.r.t. the number of nodes in an AVL tree! 

O(log n )!! 



Good news 
Proof means that if we have an AVL tree, then find is O(log n) 

–  Recall logarithms of different bases > 1 differ by only a constant factor 
 

But as we insert and delete elements, we need to: 
1.  Track balance 
2.  Detect imbalance 
3.  Restore balance 
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Is this AVL tree balanced? 
How about after insert(30)? 
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An AVL Tree 
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Track height at all times! 

10  key  
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AVL tree operations 
•  AVL find:  

–  Same as BST find 

•  AVL insert:  
–  First BST insert, then check balance and potentially “fix” 

the AVL tree 
–  Four different imbalance cases 

•  AVL delete:  
–  The “easy way” is lazy deletion 
–  Otherwise, do the deletion and then have several imbalance 

cases (we will likely skip this but post slides for those 
interested) 
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Insert: detect potential imbalance 

1.  Insert the new node as in a BST (a new leaf) 
2.  For each node on the path from the root to the new leaf, the 

insertion may (or may not) have changed the node’s height 
3.  So after recursive insertion in a subtree, detect height 

imbalance and perform a rotation to restore balance at that 
node 

 

Type of rotation will depend on the location of the imbalance (if 
any) 

 

Facts that an implementation can ignore: 
–  There must be a deepest element that is imbalanced after the 

 insert (all descendants still balanced) 
–  After rebalancing this deepest node, every node is balanced 
–  So at most one node needs to be rebalanced 
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Case #1: Example 
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Insert(6) 
Insert(3) 
Insert(1) 
 
 
Third insertion violates balance property 

•  happens to be at the root 

What is the only way to fix this?  
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Fix: Apply “Single Rotation” 
•  Single rotation: The basic operation we’ll use to 

rebalance 
–  Move child of unbalanced node into parent position 
–  Parent becomes the “other” child (always okay in a BST!) 
–  Other subtrees move in only way BST allows (next slide) 
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AVL Property violated here 

Intuition: 3 must become root 
New parent height is now the old parent’s height before insert 

1 



The example generalized 
•  Node imbalanced due to insertion somewhere in left-left 

grandchild  that causes an increasing height 
–  1 of 4 possible imbalance causes (other three coming) 

•  First we did the insertion, which would make a imbalanced 
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The general left-left case 
•  Node imbalanced due to insertion somewhere in  

 left-left grandchild 
–  1 of 4 possible imbalance causes (other three coming) 

•  So we rotate at a,using BST facts: X < b < Y < a < Z 
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•  A single rotation restores balance at the node 
–  To same height as before insertion, so ancestors now balanced 
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X 
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Another example: insert(16) 
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Another example: insert(16) 
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The general right-right case 
•  Mirror image to left-left case, so you rotate the other way 

–  Exact same concept, but need different code 
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Two cases to go 
Unfortunately, single rotations are not enough for 

insertions in the left-right subtree or the right-left 
subtree 

 
Simple example:  insert(1), insert(6), insert(3) 

–  First wrong idea: single rotation like we did for left-left 
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Two cases to go 
Unfortunately, single rotations are not enough for 

insertions in the left-right subtree or the right-left 
subtree 

 
Simple example: insert(1), insert(6), insert(3) 

–  Second wrong idea: single rotation on the child of the 
unbalanced node 
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Sometimes two wrongs make a 
right 

•  First idea violated the BST property 
•  Second idea didn’t fix balance 
•  But if we do both single rotations, starting with the 

second, it works!  (And not just for this example.) 
•  Double rotation:  

1.  Rotate problematic child and grandchild 
2.  Then rotate between self and new child 
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Intuition: 3 must become root 



The general right-left case 
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Rotation 1:   
 b.left = c.right 
 c.right = b 
 a.right = c 

Rotation 2: 
 a.right = c.left 
 c.left = a 
 root = c 



Comments 
•  Like in the left-left and right-right cases, the height of the 

subtree after rebalancing is the same as before the insert 
–  So no ancestor in the tree will need rebalancing 

•  Does not have to be implemented as two rotations; can just do: 

Easier to remember than you may think: 
 1) Move c to grandparent’s position 

     2) Put a, b, X, U, V, and Z in the only legal positions for a BST 
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The last case: left-right 
•  Mirror image of right-left 

– Again, no new concepts, only new code to write 
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Insert, summarized 
•  Insert as in a BST 
•  Check back up path for imbalance, which will be 1 of 4 cases: 

–  Node’s left-left grandchild is too tall (left-left single rotation) 
–  Node’s left-right grandchild is too tall (left-right double rotation) 
–  Node’s right-left grandchild is too tall (right-left double rotation) 
–  Node’s right-right grandchild is too tall (right-right double rotation) 

•  Only one case occurs because tree was balanced before insert 
•  After the appropriate single or double rotation, the smallest-

unbalanced subtree has the same height as before the insertion 
–  So all ancestors are now balanced 
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Now efficiency 
 
•  Worst-case complexity of find: O(log n) 

–  Tree is balanced 
 

•  Worst-case complexity of insert: O(log n) 
–  Tree starts balanced 
–  A rotation is O(1) and there’s an O(log n) path to root 
–  (Same complexity even without one-rotation-is-enough fact) 
–  Tree ends balanced 

•  Worst-case complexity of buildTree: O(n log n) 
 
Takes some more rotation action to handle delete… 

Summer 2016 CSE373: Data Structures & 
Algorithms 



Pros and Cons of AVL Trees 
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Arguments for AVL trees: 
 
1.  All operations logarithmic worst-case because trees are always  

balanced 
2.  Height balancing adds no more than a constant factor to the speed 

of insert and delete 
 
Arguments against AVL trees: 
 
1.  Difficult to program & debug [but done once in a library!] 
2.  More space for height field 
3.  Asymptotically faster but rebalancing takes a little time 
4.  Most large searches are done in database-like systems on disk and 

use other structures (e.g., B-trees, a data structure in the text) 
5.  If amortized (later, I promise) logarithmic time is enough, use splay 

trees (also in text) 


