Announcements

- Lilian's office hours rescheduled: Fri 2-4pm
- HW2 out tomorrow, due Thursday, 7/7

Deletion in BST

Why might deletion be harder than insertion?

Deletion

- Removing an item disrupts the tree structure
- Basic idea: find the node to be removed, then "fix" the tree so that it is still a binary search tree
- Three cases:
- Node has no children (leaf)
- Node has one child
- Node has two children

Deletion - The Leaf Case

```
delete(17)
```


Deletion - The One Child Case

```
delete(15)
```


Deletion - The Two Child Case delete (5)

What can we replace 5 with?

Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:

- successor from right subtree: findMin(node.right)
- predecessor from left subtree:
findMax (node.left)
- These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

- Leaf or one child case - easy cases of delete!

Lazy Deletion

- Lazy deletion can work well for a BST
- Simpler
- Can do "real deletions" later as a batch
- Some inserts can just "undelete" a tree node
- But
- Can waste space and slow down find operations
- Make some operations more complicated:
- How would you change findMin and findMax?

BuildTree for BST

- Let's consider buildTree
- Insert all, starting from an empty tree
- Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
- If inserted in given order, what is the tree?
- What big-O runtime for this kind of sorted input?
 any better?

BuildTree for BST

- Insert keys 1, 2, 3, 4, 5, 6, 7, 8,9 into an empty BST
- What we if could somehow re-arrange them
- median first, then left median, right median, etc.
$-5,3,7,2,1,4,8,6,9$
- What tree does that give us?
- What big-O runtime?

$O(n \log n)$, awesome!

Unbalanced BST

- Balancing a tree at build time is insufficient, as sequences of operations can eventually transform that carefully balanced tree into the dreaded list
- At that point, everything is $O(n)$ and nobody is happy
- find
- insert
- delete

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes inserted in arbitrary order
- Average height is $O(\log n)$ - see text for proof
- Worst case height is $O(n)$
- Simple cases, such as inserting in key order, lead to the worst-case scenario

Solution: Require a Ballance Condition that

1. Ensures depth is always $O(\log n)-$ strong enough!
2. Is efficient to maintain - not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

Too weak!
Height mismatch example:
2. Left and right subtrees of the root
have equal height
Too weak!
Double chain example:

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes

4. Left and right subtrees of every node have equal height
```
    Too strong!
Only perfect trees ( \(2^{n}-1\) nodes)
```


The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) $=$ height(node.left) height(node.right)

AVL property: for every node $x,-1 \leq \operatorname{balance}(x) \leq \mathbb{1}$

- Ensures small depth
- Will prove this by showing that an AVL tree of height h must have a number of nodes exponential in h
- Efficient to maintain
- Using single and double rotations

CSE373: Data Structures \& Algorithms Lecture 5: AVL Trees

Hunter Zahn

Summer 2016

The AVL Tree Data Structure

Structural properties

1. Binary tree property
2. Balance property: balance of every node is between - 1 and 1
Result:
Worst-case depth is
$\mathrm{O}(\log n)$

Ordering property

- Same as for BST

Definition: balance (node) $=\operatorname{height}($ node.left $)-\operatorname{height}($ node.right $)$

An AVL tree?

An AVL tree?

The shallowness bound

Let $S(h)=$ the minimum number of nodes in an AVL tree of height \boldsymbol{h}

- If we can prove that $S(h)$ grows exponentially in h, then a tree with n nodes has a logarithmic height
- Step 1: Define $S(h)$ inductively using AVL property
$-S(-1)=0, S(0)=1, S(1)=2$
- For $h \geq 1, S(h)=1+S(h-1)+S(h-2)$
- Step 2: Bound $S(h)$

- Using everybody's favorite: Induction!

Fibonacci Numbers

- Sequence of numbers where each number is the sum of the preceding two numbers:
$-0,1,1,2,3,5,8, \ldots$
$F(0)=0$
$F(1)=1$
$F(n+1)=F(n-1)+F(n)$

Grows exponentially

$S(h)$ and $F(h)$

h	0	1	2	3	4	5	6	7	8	9
$S(h)$	1	2	4	7	12	20	33	54	88	143
$F(h)$	0	1	1	2	3	5	8	13	21	34
h	0	1	2	3	4	5	6	7	8	9
$S(h)$	1	2	4	7	12	20	33	54	88	143
$F(h+3)$	2	3	5	8	13	21	34	55	89	144

$S(h)$ appears to be equal to $F(h+3)-1$

1) $S(-1)=0, S(0)=1, S(1)=2$
2) For $h \geq 1, S(h)=1+S(h-1)+S(h-2)$

$$
F(h+1)=F(h-1)+F(h)
$$

The proof

Let $P(h)$ be $S(h)==F(h+3)-1$. We will prove this for all $h>=0$

Base cases:

$$
\begin{array}{ll}
S(0)=1 & \mathrm{~F}(0+3)-1=2-1=1 \\
S(1)=2 & \mathrm{~F}(1+3)-1=3-1=2
\end{array}
$$

Inductive Hypothesis:

Assume $P(k)$ for an arbitrary $\mathrm{k}>1$.
$P(k): S(k)==F(k+3)-1$

$\mathrm{O}(\log \mathrm{n})!!$

Inductive Step:

```
\(\mathrm{S}(k+1)=S(k-1)+S(k)+1\)
    \(=[F((k-1)+3)-1]+[F(k+3)-1]+1\)
    \(=F((k-1)+3)+F(k+3)-1\)
    \(=F((k+1)+3)-1\)
\(P(k) \rightarrow P(k+1)\)
```


Conclusion:

We have proven by induction that $P(h)$ holds for all $h>=0$.
The minimum number of nodes in an AVL tree grows exponentially with respect to the height! Therefore, the height grows logarithmically w.r.t. the number of nodes in an AVL tree!

Good news

Proof means that if we have an AVL tree, then find is $O(\log n)$

- Recall logarithms of different bases > 1 differ by only a constant factor

But as we insert and delete elements, we need to:

1. Track balance
2. Detect imbalance
3. Restore balance

An AVL Tree

Track height at all times!

AVL tree operations

- AVL find:
- Same as BST find
- AVLinsert:
- First BST insert, then check balance and potentially "fix" the AVL tree
- Four different imbalance cases
- AVL delete:
- The "easy way" is lazy deletion
- Otherwise, do the deletion and then have several imbalance cases (we will likely skip this but post slides for those interested)

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the insertion may (or may not) have changed the node's height
3. So after recursive insertion in a subtree, detect height imbalance and perform a rotation to restore balance at that node

Type of rotation will depend on the location of the imbalance (if any)

Facts that an implementation can ignore:

- There must be a deepest element that is imbalanced after the insert (all descendants still balanced)
- After rebalancing this deepest node, every node is balanced
- So at most one node needs to be rebalanced

Case \#1: Example

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance property

- happens to be at the root

What is the only way to fix this?

Fix: Apply "Single Rotation"

- Single rotation: The basic operation we'll use to rebalance
- Move child of unbalanced node into parent position
- Parent becomes the "other" child (always okay in a BST!)
- Other subtrees move in only way BST allows (next slide)

AVL Property violated here

Intuition: 3 must become root
New parent height is now the old parent's height before insert

The example generalized

- Node imbalanced due to insertion somewhere in left-left grandchild that causes an increasing height
- 1 of 4 possible imbalance causes (other three coming)
- First we did the insertion, which would make a imbalanced

The general left-left case

- Node imbalanced due to insertion somewhere in left-left grandchild
- 1 of 4 possible imbalance causes (other three coming)
- So we rotate at \mathbf{a}, using BST facts: $\mathrm{X}<\mathrm{b}<\mathrm{Y}<\mathrm{a}<\mathrm{Z}$

- A single rotation restores balance at the node
- To same height as before insertion, so ancestors now balanced

Another example: insert(16)

Another example: insert(16)

The general right-right case

- Mirror image to left-left case, so you rotate the other way
- Exact same concept, but need different code

Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

- First wrong idea: single rotation like we did for left-left

Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

- Second wrong idea: single rotation on the child of the unbalanced node

Sometimes two wrongs make a right

- First idea violated the BST property
- Second idea didn't fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)
- Double rotation:

1. Rotate problematic child and grandchild
2. Then rotate between self and new child

Intuition: 3 must become root

The general right-left case

Rotation 1:
b. left = c.right
c. right $=b$
a. right $=c$

Rotation 2:
a. right $=c . l e f t$
c.left = a root $=c$

Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
- So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:

1) Move c to grandparent's position
2) Put a, b, X, U, V, and Z in the only legal positions for a BST

The last case: left-right

- Mirror image of right-left
- Again, no new concepts, only new code to write

Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
- Node's left-left grandchild is too tall (left-left single rotation)
- Node's left-right grandchild is too tall (left-right double rotation)
- Node's right-left grandchild is too tall (right-left double rotation)
- Node's right-right grandchild is too tall (right-right double rotation)
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallestunbalanced subtree has the same height as before the insertion
- So all ancestors are now balanced

Now efficiency

- Worst-case complexity of find: $O(\log n)$
- Tree is balanced
- Worst-case complexity of insert: $O(\log n)$
- Tree starts balanced
- A rotation is $O(1)$ and there's an $O(\log n)$ path to root
- (Same complexity even without one-rotation-is-enough fact)
- Tree ends balanced
- Worst-case complexity of buildTree: $O(n \log n)$

Takes some more rotation action to handle delete...

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:

1. Difficult to program \& debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. Most large searches are done in database-like systems on disk and use other structures (e.g., B-trees, a data structure in the text)
5. If amortized (later, I promise) logarithmic time is enough, use splay trees (also in text)
