
Announcements

•  Lilian’s office hours rescheduled: Fri 2-4pm
•  HW2 out tomorrow, due Thursday, 7/7

Summer 2016 CSE373: Data Structures & Algorithms

Deletion in BST

20 9 2

15 5

12

30 7 17

Why might deletion be harder than insertion?

10

Summer 2016 CSE373: Data Structures & Algorithms

Deletion
•  Removing an item disrupts the tree structure

•  Basic idea: find the node to be removed, then
“fix” the tree so that it is still a binary search tree

•  Three cases:
–  Node has no children (leaf)
–  Node has one child
–  Node has two children

Summer 2016 CSE373: Data Structures & Algorithms

Deletion – The Leaf Case

20 9 2

15 5

12

30 7 17

delete(17)

10

Summer 2016 CSE373: Data Structures & Algorithms

Deletion – The One Child Case

20 9 2

15 5

12

30 7 10

delete(15)

Summer 2016 CSE373: Data Structures & Algorithms

Deletion – The Two Child Case

30 9 2

20 5

12

7

What can we replace 5 with?

10

delete(5)

Summer 2016 CSE373: Data Structures & Algorithms

Deletion – The Two Child Case
Idea: Replace the deleted node with a value guaranteed to be

between the two child subtrees

Options:
•  successor from right subtree: findMin(node.right)
•  predecessor from left subtree:
findMax(node.left)
–  These are the easy cases of predecessor/successor

Now delete the original node containing successor or

predecessor
•  Leaf or one child case – easy cases of delete!

Summer 2016 CSE373: Data Structures & Algorithms

Lazy Deletion

•  Lazy deletion can work well for a BST
– Simpler
– Can do “real deletions” later as a batch
– Some inserts can just “undelete” a tree node

•  But
– Can waste space and slow down find operations
– Make some operations more complicated:

•  How would you change findMin and findMax?

Summer 2016 CSE373: Data Structures & Algorithms

BuildTree for BST
•  Let’s consider buildTree

–  Insert all, starting from an empty tree

•  Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

–  If inserted in given order,
what is the tree?

–  What big-O runtime for
this kind of sorted input?

–  Is inserting in the reverse order
 any better?

1

2

3

O(n2)
Can we do better?

Summer 2016 CSE373: Data Structures & Algorithms

BuildTree for BST
•  Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

•  What we if could somehow re-arrange them
– median first, then left median, right median, etc.
– 5, 3, 7, 2, 1, 4, 8, 6, 9

–  What tree does that give us?

–  What big-O runtime? 8 4 2

7 3

5

9

6

1 O(n log n), awesome!

Summer 2016 CSE373: Data Structures & Algorithms

Unbalanced BST

•  Balancing a tree at build time is insufficient, as
sequences of operations can eventually transform
that carefully balanced tree into the dreaded list

•  At that point, everything is
O(n) and nobody is happy
– find
– insert
– delete

1

2

3

Summer 2016 CSE373: Data Structures & Algorithms

Balanced BST
Observation
•  BST: the shallower the better!
•  For a BST with n nodes inserted in arbitrary order

–  Average height is O(log n) – see text for proof
–  Worst case height is O(n)

•  Simple cases, such as inserting in key order, lead to
 the worst-case scenario

Solution: Require a Balance Condition that
1.  Ensures depth is always O(log n) – strong enough!
2.  Is efficient to maintain – not too strong!

Summer 2016 CSE373: Data Structures & Algorithms

Potential Balance Conditions
1.  Left and right subtrees of

the root
have equal number of
nodes

2. Left and right subtrees of

the root
have equal height

Too weak!
Height mismatch example:

Too weak!
Double chain example:

Summer 2016 CSE373: Data Structures & Algorithms

Potential Balance Conditions
3.  Left and right subtrees of every node

have equal number of nodes

4.  Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees (2n – 1 nodes)

Too strong!
Only perfect trees (2n – 1 nodes)

Summer 2016 CSE373: Data Structures & Algorithms

The AVL Balance Condition
Left and right subtrees of every node
have heights differing by at most 1

Definition: balance(node) = height(node.left) –

height(node.right)

AVL property: for every node x, –1 ≤ balance(x) ≤ 1

•  Ensures small depth
–  Will prove this by showing that an AVL tree of height

h must have a number of nodes exponential in h

•  Efficient to maintain
–  Using single and double rotations

Summer 2016 CSE373: Data Structures & Algorithms

CSE373: Data Structures & Algorithms

Lecture 5: AVL Trees

Hunter Zahn
Summer 2016

Thanks to Kevin Quinn and Dan Grossman for slide materials Summer 2016 CSE373: Data Structures & Algorithms

The AVL Tree Data Structure

4

13 10 6 2

11 5

8

14 12 7 9

Structural properties
1.  Binary tree property
2.  Balance property:

balance of every node is
between -1 and 1

Result:
Worst-case depth is

O(log n)

Ordering property
–  Same as for BST

15

Summer 2016 CSE373: Data Structures & Algorithms

Definition: balance(node) = height(node.left) – height(node.right)

11 1

8 4

6

10 12

7
Height = 0
Balance = 0

Height = 0
Balance = 0

Height = 0
Balance = 0

Height = 0
Balance = 0

Height = 1
Balance = 1

Height = 1
Balance = 0

Height = 2
Balance = -1

Height = 3
Balance = -1

An AVL tree?

Summer 2016 CSE373: Data Structures &
Algorithms

3

11 7 1

8 4

6

2

5

Height = 0
Balance = 0

Height = 0
Balance = 0

Height = 0
Balance = 0

Height = 0
Balance = 0 Height = 1

Balance = 1

Height = 1
Balance = 0

Height = 2
Balance = -2

Height = 3
Balance = 2

Height = 4
Balance = 2

An AVL tree?

Summer 2016 CSE373: Data Structures &
Algorithms

No!

The shallowness bound
Let S(h) = the minimum number of nodes in an

AVL tree of height h
–  If we can prove that S(h) grows exponentially in h, then

a tree with n nodes has a logarithmic height

•  Step 1: Define S(h) inductively using AVL property
–  S(-1)=0, S(0)=1, S(1)=2
– For h ≥ 1, S(h) = 1+S(h-1)+S(h-2)

•  Step 2: Bound S(h)
– Using everybody’s favorite: Induction!

h-1 h-2

h

Summer 2016 CSE373: Data Structures &
Algorithms

Fibonacci Numbers

•  Sequence of numbers where each number is
the sum of the preceding two numbers:
– 0, 1, 1, 2, 3, 5, 8, …
F(0) = 0
F(1) = 1
F(n+1) = F(n-1) + F(n)

Grows exponentially

Summer 2016 CSE373: Data Structures & Algorithms

S(h) and F(h)

h 0 1 2 3 4 5 6 7 8 9
S(h) 1 2 4 7 12 20 33 54 88 143
F(h) 0 1 1 2 3 5 8 13 21 34

Summer 2016 CSE373: Data Structures & Algorithms

h 0 1 2 3 4 5 6 7 8 9
S(h) 1 2 4 7 12 20 33 54 88 143
F(h+3) 2 3 5 8 13 21 34 55 89 144

S(h) appears to be equal to F(h+3) - 1

The proof
Let P(h) be S(h) == F(h+3)-1. We will prove this for all h >= 0
Base cases:

S(0) = 1 F(0 + 3) – 1 = 2 – 1 = 1
S(1) = 2 F(1 + 3) – 1 = 3 – 1 = 2

Inductive Hypothesis:
Assume P(k) for an arbitrary k > 1.
P(k): S(k) == F(k+3)-1
Inductive Step:
S(k+1) = S(k-1) + S(k) + 1

 = [F((k-1) + 3) – 1] + [F(k+3) – 1] + 1 I.H.
 = F((k-1) + 3) + F(k + 3) – 1 simplify
 = F((k+1) + 3) – 1 def of F

P(k) ! P(k+1)
Conclusion:
We have proven by induction that P(h) holds for all h >= 0.

Summer 2016 CSE373: Data Structures &
Algorithms

Remember:
1)  S(-1)=0, S(0)=1, S(1)=2
2)  For h ≥ 1, S(h) = 1+S(h-1)+S(h-2)

F(h + 1) = F(h - 1) + F(h)

The minimum number of nodes in an AVL tree grows exponentially with respect to the height!
Therefore, the height grows logarithmically w.r.t. the number of nodes in an AVL tree!

O(log n)!!

Good news
Proof means that if we have an AVL tree, then find is O(log n)

–  Recall logarithms of different bases > 1 differ by only a constant factor

But as we insert and delete elements, we need to:
1.  Track balance
2.  Detect imbalance
3.  Restore balance

Summer 2016 CSE373: Data Structures &
Algorithms

9 2

5

10

7

Is this AVL tree balanced?
How about after insert(30)?

15

20

An AVL Tree

20

9 2 15

5

10

30

17 7

0

0 0

0 1 1

2 2

3 …

3

value

height

children

Track height at all times!

10 key

Summer 2016 CSE373: Data Structures & Algorithms

AVL tree operations
•  AVL find:

–  Same as BST find

•  AVL insert:
–  First BST insert, then check balance and potentially “fix”

the AVL tree
–  Four different imbalance cases

•  AVL delete:
–  The “easy way” is lazy deletion
–  Otherwise, do the deletion and then have several imbalance

cases (we will likely skip this but post slides for those
interested)

Summer 2016 CSE373: Data Structures &

Algorithms

Insert: detect potential imbalance

1.  Insert the new node as in a BST (a new leaf)
2.  For each node on the path from the root to the new leaf, the

insertion may (or may not) have changed the node’s height
3.  So after recursive insertion in a subtree, detect height

imbalance and perform a rotation to restore balance at that
node

Type of rotation will depend on the location of the imbalance (if
any)

Facts that an implementation can ignore:
–  There must be a deepest element that is imbalanced after the

 insert (all descendants still balanced)
–  After rebalancing this deepest node, every node is balanced
–  So at most one node needs to be rebalanced

Summer 2016 CSE373: Data Structures &
Algorithms

Case #1: Example

Summer 2016 CSE373: Data Structures &
Algorithms

Insert(6)
Insert(3)
Insert(1)

Third insertion violates balance property

•  happens to be at the root

What is the only way to fix this?

6

3

1

2

1

0

6

3

1

0

6
0

Fix: Apply “Single Rotation”
•  Single rotation: The basic operation we’ll use to

rebalance
–  Move child of unbalanced node into parent position
–  Parent becomes the “other” child (always okay in a BST!)
–  Other subtrees move in only way BST allows (next slide)

Summer 2016 CSE373: Data Structures &
Algorithms

3

1 6
0 0

1
6

3

0

1

2

AVL Property violated here

Intuition: 3 must become root
New parent height is now the old parent’s height before insert

1

The example generalized
•  Node imbalanced due to insertion somewhere in left-left

grandchild that causes an increasing height
–  1 of 4 possible imbalance causes (other three coming)

•  First we did the insertion, which would make a imbalanced

Summer 2016 CSE373: Data Structures &
Algorithms

a

Z

Y

b

X

h h
h

h+1
h+2 a

Z

Y

b

X

h+1 h
h

h+2
h+3

The general left-left case
•  Node imbalanced due to insertion somewhere in

 left-left grandchild
–  1 of 4 possible imbalance causes (other three coming)

•  So we rotate at a,using BST facts: X < b < Y < a < Z

Summer 2016 CSE373: Data Structures &
Algorithms

•  A single rotation restores balance at the node
–  To same height as before insertion, so ancestors now balanced

a

Z

Y

b

X

h+1 h
h

h+2
h+3 b

Z Y

h+1 h h

h+1

h+2

X

a

Another example: insert(16)

Summer 2016 CSE373: Data Structures &
Algorithms

10 4

22 8

15

 3 6

19

17 20

24

16

Another example: insert(16)

Summer 2016 CSE373: Data Structures &
Algorithms

10 4

22 8

15

 3 6

19

17 20

24

16

10 4

 8

15

 3 6

19

17

20 16

22

24

The general right-right case
•  Mirror image to left-left case, so you rotate the other way

–  Exact same concept, but need different code

Summer 2016 CSE373: Data Structures &
Algorithms

a

Z Y

X

h

h
h+1

h+3

b
h+2 b

Z
Y

a

X

h h
h+1

h+1
h+2

Two cases to go
Unfortunately, single rotations are not enough for

insertions in the left-right subtree or the right-left
subtree

Simple example: insert(1), insert(6), insert(3)

–  First wrong idea: single rotation like we did for left-left

Summer 2016 CSE373: Data Structures &
Algorithms 3

6

1

0

1

 2

6

1 3

1

0 0

Two cases to go
Unfortunately, single rotations are not enough for

insertions in the left-right subtree or the right-left
subtree

Simple example: insert(1), insert(6), insert(3)

–  Second wrong idea: single rotation on the child of the
unbalanced node

Summer 2016 CSE373: Data Structures &
Algorithms

3

6

1

0

1

 2

6

3

1

0

 1

 2

Sometimes two wrongs make a
right

•  First idea violated the BST property
•  Second idea didn’t fix balance
•  But if we do both single rotations, starting with the

second, it works! (And not just for this example.)
•  Double rotation:

1.  Rotate problematic child and grandchild
2.  Then rotate between self and new child

Summer 2016 CSE373: Data Structures &
Algorithms

3

6

1

0

1

 2

6

3

1

0

 1

 2

0 0

1

1

3

6

Intuition: 3 must become root

The general right-left case

Summer 2016 CSE373: Data Structures &
Algorithms

a

X

b

c
h-1

h
h

h

V
U

h+1
h+2

h+3

Z

a

X

c

h-1
h+1 h

h

V
U

h+2

h+3

Z

b

h

c

X

h-1

h+1
h

h+1

V U

h+2

Z

b

h

a
h

Rotation 1:
 b.left = c.right
 c.right = b
 a.right = c

Rotation 2:
 a.right = c.left
 c.left = a
 root = c

Comments
•  Like in the left-left and right-right cases, the height of the

subtree after rebalancing is the same as before the insert
–  So no ancestor in the tree will need rebalancing

•  Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:
 1) Move c to grandparent’s position

 2) Put a, b, X, U, V, and Z in the only legal positions for a BST

a

X

b

c
h-1

h
h

h

V
U

h+1
h+2

h+3

Z

c

X

h-1

h+1
h

h+1

V U

h+2

Z

b

h

a
h

Summer 2016 CSE373: Data Structures & Algorithms

The last case: left-right
•  Mirror image of right-left

– Again, no new concepts, only new code to write

Summer 2016 CSE373: Data Structures &
Algorithms

a

h-1

h

h h

V U

h+1

h+2

h+3

Z

X

b

c

c

X

h-1

h+1
h

h+1

V U

h+2

Z

a

h

b
h

Insert, summarized
•  Insert as in a BST
•  Check back up path for imbalance, which will be 1 of 4 cases:

–  Node’s left-left grandchild is too tall (left-left single rotation)
–  Node’s left-right grandchild is too tall (left-right double rotation)
–  Node’s right-left grandchild is too tall (right-left double rotation)
–  Node’s right-right grandchild is too tall (right-right double rotation)

•  Only one case occurs because tree was balanced before insert
•  After the appropriate single or double rotation, the smallest-

unbalanced subtree has the same height as before the insertion
–  So all ancestors are now balanced

Summer 2016 CSE373: Data Structures &
Algorithms

Now efficiency

•  Worst-case complexity of find: O(log n)

–  Tree is balanced

•  Worst-case complexity of insert: O(log n)
–  Tree starts balanced
–  A rotation is O(1) and there’s an O(log n) path to root
–  (Same complexity even without one-rotation-is-enough fact)
–  Tree ends balanced

•  Worst-case complexity of buildTree: O(n log n)

Takes some more rotation action to handle delete…

Summer 2016 CSE373: Data Structures &
Algorithms

Pros and Cons of AVL Trees

Summer 2016 CSE373: Data Structures & Algorithms

Arguments for AVL trees:

1.  All operations logarithmic worst-case because trees are always

balanced
2.  Height balancing adds no more than a constant factor to the speed

of insert and delete

Arguments against AVL trees:

1.  Difficult to program & debug [but done once in a library!]
2.  More space for height field
3.  Asymptotically faster but rebalancing takes a little time
4.  Most large searches are done in database-like systems on disk and

use other structures (e.g., B-trees, a data structure in the text)
5.  If amortized (later, I promise) logarithmic time is enough, use splay

trees (also in text)

