CSE373: Data Structures & Algorithms

Lecture 4: Dictionaries; Binary Search Trees

Hunter Zahn
Summer 2016
Announcements

• HW1 due Friday at 11:00pm
Where we are

Studying the absolutely essential ADTs of computer science and classic data structures for implementing them

ADTs so far:

1. **Stack**: push, pop, isEmpty, ...
2. **Queue**: enqueue, dequeue, isEmpty, ...

Next:

3. **Dictionary** (also known as a Map): associate keys with values
 - Extremely common
The Dictionary (a.k.a. Map) ADT

• Data:
 – set of (key, value) pairs
 – keys must be comparable

• Operations:
 – insert(key, value)
 – find(key)
 – delete(key)
 – … *Will tend to emphasize the keys; don’t forget about the stored values*
Comparison: The Set ADT

The Set ADT is like a Dictionary without any values
 – A key is *present* or not (no duplicates)

For **find, insert, delete**, there is little difference
 – In dictionary, values are “just along for the ride”
 – *So same data-structure ideas work for dictionaries and sets*

But if your Set ADT has other important operations this may not hold
 – **union, intersection, is_subset**
 – Notice these are **binary operators** on sets

binary operation: a rule for combining two objects of a given type, to obtain another object of that type
Dictionary data structures

There are many good data structures for (large) dictionaries

1. AVL trees (Friday’s class)
 - Binary search trees with \textit{guaranteed balancing}

2. B-Trees
 - Also always balanced, but different and shallower
 - \(B \neq \text{Binary}; \) B-Trees generally have large branching factor

3. Hashtables
 - Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

But first some applications and less efficient implementations...
A Modest Few Uses

Any time you want to store information according to some key and be able to retrieve it efficiently. Lots of programs do that!

- Search: inverted indexes, phone directories, ...
- Networks: router tables
- Operating systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Biology: genome maps

What else?
Simple implementations

For dictionary with n key/value pairs

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>find</th>
<th>delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted linked-list</td>
<td>$O(1)^*$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Unsorted array</td>
<td>$O(1)^*$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted linked list</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

* Unless we need to check for duplicates

We’ll see a Binary Search Tree (BST) probably does better, but not in the worst case unless we keep it balanced.
Lazy Deletion

A general technique for making **delete** as fast as **find**:

– Instead of actually removing the item just mark it deleted

Plusses:

– Simpler
– Can do removals later in batches
– If re-added soon thereafter, just unmark the deletion

Minuses:

– Extra *space* for the “is-it-deleted” flag
– Data structure full of deleted nodes wastes *space*
– **find** $O(\log m)$ *time* where m is data-structure size (okay)
– May complicate other operations
Tree Terminology

• **node**: an object containing a data value and left/right children

 - **root**: topmost node of a tree
 - **leaf**: a node that has no children
 - **branch**: any internal node (non-root)
 - **parent**: a node that refers to this one
 - **child**: a node that this node refers to
 - **sibling**: a node with a common

• **subtree**: the smaller tree of nodes on the left or right of the current node

• **height**: length of the longest path from the root to any node (count edges)

• **level or depth**: length of the path from a root to a given node
Some tree terms (mostly review)

• There are many kinds of trees
 – Every binary tree is a tree
 – Every list is kind of a tree (think of “next” as the one child)

• There are many kinds of binary trees
 – Every binary search tree is a binary tree
 – Later: A binary heap is a different kind of binary tree

• A tree can be balanced or not
 – A balanced tree with n nodes has a height of $O(\log n)$
 – Different tree data structures have different “balance conditions” to achieve this
Kinds of trees

Certain terms define trees with specific structure

- **Binary tree:** Each node has at most 2 children (branching factor 2)
- **n-ary tree:** Each node has at most n children (branching factor n)
- **Perfect tree:** Each row completely full
- **Complete tree:** Each row completely full except maybe the bottom row, which is filled from left to right

What is the height of a perfect binary tree with n nodes?
A complete binary tree?
Tree terms (review?)

- root(tree)
- leaves(tree)
- children(node)
- parent(node)
- siblings(node)
- ancestors(node)
- descendents(node)
- subtree(node)

- depth(node)
- height(tree)
- degree(node)
- branching factor(tree)
Binary Trees

- Binary tree is empty or
 - A root \textit{(with data)}
 - A left subtree \textit{(may be empty)}
 - A right subtree \textit{(may be empty)}

- Representation:

- For a dictionary, data will include a key and a value
Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

- max # of leaves:

- max # of nodes:

- min # of leaves:

- min # of nodes:
Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:

- max # of leaves: 2^h
- max # of nodes: $2^{(h+1)} - 1$
- min # of leaves: 1
- min # of nodes: $h + 1$

For n nodes, we cannot do better than $O(\log n)$ height, and we want to avoid $O(n)$ height
Calculating height

What is the height of a tree with root `root`?

```java
int treeHeight(Node root) {
    // ???
}
```
Calculating height

What is the height of a tree with root `root`?

```java
int treeHeight(Node root) {
    if (root == null)
        return -1;
    return 1 + max(treeHeight(root.left),
                    treeHeight(root.right));
}
```

Running time for tree with n nodes: $O(n)$ – single pass over tree

Note: non-recursive is painful – need your own stack of pending nodes;
much easier to use recursion’s call stack
Tree Traversals

A traversal is an order for visiting all the nodes of a tree

- **Pre-order**: root, left subtree, right subtree

- **In-order**: left subtree, root, right subtree

- **Post-order**: left subtree, right subtree, root

(an expression tree)
Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

- **Pre-order:** root, left subtree, right subtree
 \[+ \ast 2 4 5 \]

- **In-order:** left subtree, root, right subtree
 \[2 \ast 4 + 5 \]

- **Post-order:** left subtree, right subtree, root
 \[2 4 \ast 5 + \]
More on traversals

```java
void inOrderTraversal(Node t) {
    if (t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```

Sometimes order doesn’t matter
- Example: sum all elements

Sometimes order matters
- Example: print tree with parent above indented children (pre-order)
- Example: evaluate an expression tree (post-order)
Binary Search Tree

- **Structure property ("binary")**
 - Each node has \(\leq 2 \) children
 - Result: keeps operations simple

- **Order property**
 - All keys in left subtree smaller than node’s key
 - All keys in right subtree larger than node’s key
 - Result: easy to find any given key
Are these BSTs?
Are these BSTs?
Find in BST, Recursive

```c
int find(Key key, Node root)
{
    if (root == null)
        return null;
    if (key < root.key)
        return find(key, root.left);
    if (key > root.key)
        return find(key, root.right);
    return root.data;
}
```
Find in BST, Iterative

```java
int find(Key key, Node root) {
    while (root != null && root.key != key) {
        if (key < root.key)
            root = root.left;
        else (key > root.key)
            root = root.right;
    }
    if (root == null)
        return null;
    return root.data;
}
```
Other “Finding” Operations

- Find *minimum* node
- Find *maximum* node

- Find *predecessor* of a non-leaf
- Find *successor* of a non-leaf
- Find *predecessor* of a leaf
- Find *successor* of a leaf
Insert in BST

```
insert(13)
insert(8)
insert(31)
```

(New) insertions happen only at leaves – easy!
Deletion in BST

Why might deletion be harder than insertion?
Deletion

• Removing an item disrupts the tree structure

• Basic idea: find the node to be removed, then “fix” the tree so that it is still a binary search tree

• Three cases:
 – Node has no children (leaf)
 – Node has one child
 – Node has two children
Deletion – The Leaf Case

delete(17)
Deletion – The One Child Case

delete(15)
Deletion – The Two Child Case

What can we replace 5 with?

delete(5)
Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

Options:
• *successor* from right subtree: \(\text{findMin}(\text{node}.\text{right}) \)
• *predecessor* from left subtree: \(\text{findMax}(\text{node}.\text{left}) \)
 – These are the easy cases of predecessor/successor

Now delete the original node containing *successor* or *predecessor*
• Leaf or one child case – easy cases of delete!
Lazy Deletion

• Lazy deletion can work well for a BST
 – Simpler
 – Can do “real deletions” later as a batch
 – Some inserts can just “undelete” a tree node

• But
 – Can waste space and slow down find operations
 – Make some operations more complicated:
 • How would you change `findMin` and `findMax`?
BuildTree for BST

• Let’s consider `buildTree`
 – Insert all, starting from an empty tree

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST
 – If inserted in given order, what is the tree?
 – What big-O runtime for this kind of sorted input?
 – Is inserting in the reverse order any better?

\(O(n^2) \)

Not a happy place
BuildTree for BST

• Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an empty BST

• What we if could somehow re-arrange them
 — median first, then left median, right median, etc.
 — 5, 3, 7, 2, 1, 4, 8, 6, 9

 — What tree does that give us?

 — What big-O runtime?

 $O(n \log n)$, definitely better
Unbalanced BST

• Balancing a tree at build time is insufficient, as sequences of operations can eventually transform that carefully balanced tree into the dreaded list

• At that point, everything is $O(n)$ and nobody is happy
 – find
 – insert
 – delete
Balanced BST

Observation
• BST: the shallower the better!
• For a BST with n nodes inserted in arbitrary order
 – Average height is $O(\log n)$ – see text for proof
 – Worst case height is $O(n)$
• Simple cases, such as inserting in key order, lead to the worst-case scenario

Solution: Require a Balance Condition that
1. Ensures depth is always $O(\log n)$ – strong enough!
2. Is efficient to maintain – not too strong!
Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

 Too weak!
 Height mismatch example:

2. Left and right subtrees of the root have equal **height**

 Too weak!
 Double chain example:
Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes.

Too strong!
Only perfect trees \((2^n - 1)\) nodes

4. Left and right subtrees of every node have equal \textit{height}

Too strong!
Only perfect trees \((2^n - 1)\) nodes
The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: \(\text{balance}(node) = \text{height}(node.\text{left}) - \text{height}(node.\text{right}) \)

AVL property: for every node \(x \), \(-1 \leq \text{balance}(x) \leq 1\)

- Ensures small depth
 - Will prove this by showing that an AVL tree of height \(h \) must have a number of nodes exponential in \(h \)

- Efficient to maintain
 - Using single and double rotations