let \(g(n) = 1000n \) and \(f(n) = n^2 \)

Show that \(g(n) \) is in \(O(f(n)) \).

Recall the definition:

\(g(n) \) is in \(O(f(n)) \) if there exist constants \(c \) and \(n_0 \) s.t. \(g(n) \leq cf(n) \ \forall n \geq n_0 \)

Note that the function names are arbitrary, you might also want to prove \(f(n) \) is in \(O(g) \) or \(A(n) \leq B(n) \).

We need \(c, n_0 \) s.t. \(g(n) \leq cf(n) \) \n\forall n \geq n_0.

\[
1000n \leq c \cdot n^2
\]

\[
c = 1
\]

\[
1000n \leq n^2
\]

This holds for all \(n \geq 1000 \), so \(n_0 = 1000 \).
likewise, we could have chosen $\lambda = 2$ and $n_0 = 500$

or even

$\lambda = 2$ and $n_0 = 1,000,000$.

there are many valid λ and n_0 pairs.