CSE373: Data Structures & Algorithms
Introduction to Multithreading & Fork-Join Parallelism

Hunter Zahn
Summer 2016

Summer 2016 CSE373: Data Structures & Algorithms 1

Changing a major assumption

So far most or all of your study of computer science has assumed

One thing happened at a time

Called sequential programming — everything part of one sequence

Removing this assumption creates major challenges & opportunities

— Programming: Divide work among threads of execution and
coordinate (synchronize) among them

— Algorithms: How can parallel activity provide speed-up
(more throughput: work done per unit time)

— Data structures: May need to support concurrent access (multiple
threads operating on data at the same time)

summer 2016 CSE373: Data Structures & Algorithms 2

A simplified view of history

Writing correct and efficient multithreaded code is often
much more difficult than for single-threaded (i.e.,

sequential) code
— Especially in common languages like Java and C

— So typically stay sequential if possible

From roughly 1980-2005, desktop computers got
exponentially faster at running sequential programs

— About twice as fast every couple years

But nobody knows how to continue this
— Increasing clock rate generates too much heat
— Relative cost of memory access is too high

— But we can keep making “wires exponentially
smaller” (Moore’s “Law”), so put multiple processors on the

same chip (“multicore”)

What to do with multiple
processors?

* Next computer you buy will likely have 4 processors
— Wait a few years and it will be 8, 16, 32, ...
— The chip companies have decided to do this (not a “law”)

* What can you do with them?

— Run multiple totally different programs at the same time
* Already do that? Yes, but with time-slicing

— Do multiple things at once in one program
e Our focus — more difficult

* Requires rethinking everything from asymptotic complexity to how
to implement data-structure operations

Parallelism vs. Concurrency

Parallelism: Concurrency:
Use extra resources to Correctly and efficiently manage
solve a problem faster access to shared resources
work lees S
resources resource

summer 2016 CSE373: Data Structures & Algorithms

Parallelism vs. Concurrency

Concurrency is when two or more
tasks can start, run, and complete
in overlapping time periods. It
doesn't necessarily mean they!'ll
ever both be running at the same
instant.

Parallelism is when tasks
literally run at the same
time, eg. on a multicore
processor.

There is some connection:
— Common to use threads for both

— If parallel computations need access to shared resources, then the
concurrency needs to be managed

We will just do a little parallelism, avoiding concurrency issues

An analogy

CS1 idea: A program is like a recipe for a cook
— One cook who does one thing at a time! (Sequential)

Parallelism:
— Have lots of potatoes to slice?
— Hire helpers, hand out potatoes and knives
— But too many chefs and you spend all your time coordinating

Concurrency:
— Lots of cooks making different things, but only 4 stove burners

— Want to allow access to all 4 burners, but not cause spills or
incorrect burner settings

Parallelism Example

Parallelism: Use extra resources to solve a problem
faster

Pseudocode for array sum
— Bad style for reasons we’ll see, but may get roughly 4x

int sum(int[] arr) {
res = new 1intf[4];
len = arr.length;
FORALL (i=0; i < 4; i++) { //parallel iterations

res[i] = sumRange (arr,i*len/4, (i+l)*len/4);
}
return res[0]+res[l]+res[2]+res[3];
}
int sumRange (int[] arr, int lo, 1int hi) {

result = 0;

for(j=lo; jJ < hi; J++)
result += arr([j];

return result;

}

summer 2016 CSE373: Data Structures & Algorithms 8

Concurrency Example

Concurrency: Correctly and efficiently manage access to
shared resources

Pseudocode for a shared chaining hashtable
— Prevent bad interleavings (correctness)
— But allow some concurrent access (performance)

class Hashtable<K,V> {

vold 1nsert (K key, V value) {
int bucket = ..;
prevent-other-inserts/lookups in table[bucket]
do the insertion
re—-enable access to table[bucket]
}
V lookup (K key) {
(similar to insert, but can allow concurrent
lookups to same bucket)

}
}

summer 2016 CSE373: Data Structures & Algorithms 9

Shared memory

The model we will assume is shared memory with explicit threads
— Not the only approach, may not be best, but time for only one

Old story: A running program has
— One program counter (current statement executing)
— One call stack (with each stack frame holding local variables)

— Objects in the heap created by memory allocation (i.e., new)
* (nothing to do with data structure called a heap)

— Static fields

New story:
— A set of threads, each with its own program counter & call stack
* No access to another thread’s local variables

— Threads can (implicitly) share static fields / objects
 To communicate, write somewhere another thread reads

summer 2016 CSE373: Data Structures & Algorithms

10

Shared memory

Threads each have own unshared call stack and current statement
— (pc for “program counter”)
— local variables are numbers, null, or heap references

Any objects can be shared, but most are not

Unshared: Shared:
locals and objects and
control static fields

summer 2016 CSE373: Data Structures & Algorithms 11

Our Needs

To write a shared-memory parallel program, need new
primitives from a programming language or library

 Ways to create and run multiple things at once
— Let’s call these things threads

* Ways for threads to share memory
— Often just have threads with references to the same objects

 Ways for threads to coordinate (a.k.a. synchronize)
— A way for one thread to wait for another to finish
— [Other features needed in practice for concurrency]

summer 2016 CSE373: Data Structures & Algorithms 12

Java basics

Learn a couple basics built into Java via java.lang.Thread

— But for style of parallel programming we’ll advocate, do not use
these threads; use Java 7’s Forkloin Framework instead

To get a new thread running:

1. Define a subclass C of java.lang.Thread, overriding run
2. Create an object of class C

3. Call that object’s start method

* start sets off a new thread, using run as its “main”

What if we instead called the run method of C?
— This would just be a normal method call, in the current thread

Let’s see how to share memory and coordinate via an example...

Parallelism idea

 Example: Sum elements of a large array

e |dea: Have 4 threads simultaneously sum 1/4 of the array
— Warning: This is an inferior first approach

EEEEEEEEERREEEEEEEREEEENEERRENENEERRENNNNEERRNNEED
‘—l—"—v—"—v—"—l—'

ans0 ansl ans2

\\ * //
ans
— Create 4 thread objects, each given a portion of the work
— Call start () on each thread object to actually run it in parallel
— Wait for threads to finish using join ()

— Add together their 4 answers for the final result

S 2016
dmmer CSE373: Data Structures & Algorithms 14

First attempt, part 1 [

class SumThread extends java.lang.Thread {
int lo; // arguments
int hi;
int[] arr;
int ans = 0; // result

SumThread (int[] a, int 1, int h) {
lo=1; hi=h; arr=a;
}

public void run () //override must have this type
for(int i=lo; 1 < hi; 1++)
ans += arr[i];

Because we must override a no-arguments/no-result run,
we use fields to communicate across threads

summer 2016 CSE373: Data Structures & Algorithms 15

First attempt, continued (wrong)

class SumThread extends java.lang.Thread {

int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ ... } // override

}

int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;

SumThread[] ts =
for (int i1i=0; 1 <
ts[1] = new Sum
for (int i1i=0; 1 <
ans += ts[1]
return ans;

new SumThread[4];

4, i++) // do parallel computations
Thread (arr,i*len/4, (i+1) *1len/4) ;

4; i++4+) // combine results

S

o
14

summer 2016 CSE373: Data Structures & Algorithms 16

Second attempt (still wrong)

class SumThread extends java.lang.Thread {

int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ ... } // override
}
int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for (int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+1l) *len/4) ;

ts[i].start(); // start not run
}

for (int i=0; i < 4; i++) // combine results
ans += ts[1].ans;
return ans;

}

summer 2016 CSE373: Data Structures & Algorithms 17

Third attempt (correct in spirit)

class SumThread extends java.lang.Thread {

int lo, int hi, int[] arr; // arguments

int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ ... } // override

int sum(int[] arr){// can be a static method

}

int len = arr.length;

int ans = 0;

SumThread|[] ts = new SumThread[4];

for(int i1=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+1l) *len/4) ;

ts[1] .start ()

}

for(int 1i=0; i < 4; i++) { // combine results
ts[i].join(); // wait for helper to finish!
ans += ts[i1].ans;

}

return ans;

Summer 2016

CSE373: Data Structures & Algorithms 18

Join (not the most descriptive word)

The Thread class defines various methods you could not
implement on your own

— For example: start, which calls run in a new thread

The join method is valuable for coordinating this kind of
computation

— Caller blocks until/unless the receiver is done executing
(meaning the call to run returns)

— Else we would have a race conditionon ts[i] .ans

This style of parallel programming is called “fork/join”

Shared memory?

Fork-join programs (thankfully) do not require much
focus on sharing memory among threads

But in languages like Java, there is memory being shared.
In our example:

— lo, hi, arr fields written by “main” thread, read by helper
thread

— ans field written by helper thread, read by “main” thread

When using shared memory, you must avoid race
conditions

— We will stick with join to do so

A better approach

Several reasons why this is a poor parallel algorithm

1. Want code to be reusable and efficient across platforms
— “Forward-portable” as core count grows

— So at the very least, parameterize by the number of threads

int sum(int|[]
int ans = 0;
SumThread[] ts = new SumThread[numTs];
for (int 1=0; 1 < numTs; 1++) {

ts[i] = new SumThread(arr, (i*arr.length)/numTs,
((i+1) *arr.length) /numTs) ;

arr, int numTs) {

ts[1].start ()
}
for(int i=0; 1 < numTs; 1i++) {
ts[i].join () ;
ans += ts[1].ans;
}

return ans;

}

summer 2016 CSE373: Data Structures & Algorithms 21

A Better Approach

2. Want to use (only) processors “available to you now”

— Not used by other programs or threads in your program
. Maybe caller is also using parallelism
. Available cores can change even while your threads run

If you have 3 processors available and using 3 threads would take time X,
then creating 4 threads would take time 1. 5X
. Example: 12 units of work, 3 processors

- Work divided into 3 parts will take 4 units of time
- Work divided into 4 parts will take 3*2 units of time

// numThreads == numProcessors 1s bad
// if some are needed for other things
int sum(int[] arr, 1nt numTs) {

}

summer 2016 CSE373: Data Structures & Algorithms 22

A Better Approach

3. Though unlikely for sum, in general subproblems
may take significantly different amounts of time

— Example: Apply method £ to every array element, but
maybe £ is much slower for some data items

e Example: Is a large integer prime?

— |f we create 4 threads and all the slow data is processed
by 1 of them, we won’t get nearly a 4x speedup
e Example of a load imbalance

A Better Approach

The counterintuitive (?) solution to all these problems is to use lots
of threads, far more than the number of processors

— But this will require changing our algorithm
— [And using a different Java library]

EEEEEEEEERREEEEEEEREEEENEERRENENEERRENNNNEERRNNEED
- —

ans0 &sl\ //ansN

ans
Forward-portable: Lots of helpers each doing a small piece

2. Processors available: Hand out “work chunks” as you go

 If 3 processors available and have 100 threads, then ignoring
constant-factor overheads, extra timeis < 3%

3. Load imbalance: No problem if slow thread scheduled early enough
e Variation probably small anyway if pieces of work are small

summer 2016 CSE373: Data Structures & Algorithms 24

Naive algorithm is poor

Suppose we create 1 thread to process every 1000 elements

int sum(int[] arr) {

arr.length / 1000;
new SumThread[numThreads];

Int numThreads
SumThread[] ts

Then combining results will have arr.length / 1000 additions
* Linear in size of array (with constant factor 1/1000)
* Previously we had only 4 pieces (constant in size of array)

In the extreme, if we create 1 thread for every 1 element, the loop to
combine results has length-of-array iterations

e Just like the original sequential algorithm

A better idea

SEEENNNEEEEENNEEEEEENNNEEREENEEEEENNNEEERENNEEE
A AT

~, ~, ~, ™~
\+ - \+ -
—_

This is straightforward to implement using divide-and-conquer
— Parallelism for the recursive calls

Summer 2016 CSE373: Data Structures & Algorithms 26

Divide-and-conquer to the rescue!

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr; // arguments
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ // override

1f(hi - lo < SEQUENTIAL CUTOFF)
for(int i=lo; 1 < hi; i++)
ans += arr|[i];
else {
SumThread left = new SumThread(arr,lo, (hi+lo)/2);
SumThread right= new SumThread (arr, (hi+lo)/2,hi);
left.start () ;
right.start () ;
left.join(); // don’t move this up a line - why?
right.join () ;

ans = left.ans + right.ans;
}
}
}
int sum(int[] arr) {
SumThread t = new SumThread(arr,0,arr.length);
t.run () ;

return t.ans;

COCS3 750 Udld STTUCTUTES & ATZOTTLTITIS L7

Divide-and-conquer really works

* The key is divide-and-conquer parallelizes the result-combining

— If you have enough processors, total time is height of the tree: O(1og
n) (optimal, exponentially faster than sequential O(n))

— Next lecture: consider reality of P << n processors

SERRNNNEEERENNEEEERENNNEEREENEEERRNNNEERRENNEED
T T
+\+/+ +\+/+
-

+

Summer 2016 CSE373: Data Structures & Algorithms 28

Being realistic

* |ntheory, you can divide down to single elements, do
all your result-combining in parallel and get optimal
speedup

— Total time O(n/numProcessors + 1og n)

* |n practice, creating all those threads and
communicating swamps the savings, so:

— Use a sequential cutoff, typically around 500-1000

 Eliminates almost all the recursive thread creation (bottom
levels of tree)

Exactly like quicksort switching to insertion sort for small
subproblems, but more important here
— Do not create two recursive threads; create one and do the
other “yourself”
e Cuts the number of threads created by another 2x

Being realistic, part 2

 Even with all this care, Java’s threads are too
“heavyweight”
— Constant factors, especially space overhead
— Creating 20,000 Java threads just a bad idea ®

 The ForklJoin Framework is designed to meet the
needs of divide-and-conquer fork-join parallelism
— In the Java 7 standard libraries
— Library’s implementation is a fascinating but advanced

topic
* Next lecture will discuss its guarantees, not how it does it

CSE373: Data Structures & Algorithms
Parallel Reductions, Maps, and Algorithm Analysis

Hunter Zahn
Summer 2016

Summer 2016 CSE373: Data Structures & Algorithms

31

Outline

Done:
 How to write a parallel algorithm with fork and join
* Why using divide-and-conquer with lots of small tasks is best

— Combines results in parallel
— (Assuming library can handle “lots of small threads”)

Now:

 More examples of simple parallel programs that fit the “map” or
“reduce” patterns

 Teaser: Beyond maps and reductions
* Asymptotic analysis for fork-join parallelism
 Amdahl’s Law

What else looks like this?

* Saw summing an array went from O(n) sequential to O(1log n)
parallel (assuming a lot of processors and very large n)!

— Exponential speed-up in theory (n / 1og n grows exponentially)

A A%

\ +/ \+/ \ —
\+ / \+ /
\+/

e Anything that can use results from two halves and merge them in O(1)
time has the same property...

Summer 2016 CSE373: Data Structures & Algorithms 33

Examples

Maximum or minimum element
Is there an element satisfying some property (e.g., is there a 17)?

Left-most element satisfying some property (e.g., first 17)
— What should the recursive tasks return?
— How should we merge the results?

Corners of a rectangle containing all points (a “bounding box”)

Counts, for example, number of strings that start with a vowel
— This is just summing with a different base case
— Many problems are!

Reductions

 Computations of this form are called reduction

* Produce single answer from collection via an
associative operator

— Associative: a + (b+c) = (a+b) + ¢

— Examples: max, count, leftmost, rightmost, sum,
product, ...

— Non-examples: median, subtraction, exponentiation
 But some things are inherently sequential

— How we process arr [i] may depend entirely on the
result of processingarr[i-1]

Summer 2016 CSE373: Data Structures & Algorithms 35

Even easier: Maps (Data Parallelism)

« A map operation operates on each element of a

collection independently to create a new collection of the
same size

— No combining results
— For arrays, this is so trivial some hardware has direct support

* Canonical example: Vector addition

int[] vector add(int[] arrl, int[] arr2){
assert (arrl.length == arr2.length);
result = new intlarrl.length];
FORALL (1=0; 1 < arrl.length; 1++) {
result[i] = arrl[i] + arr2[i];
}

return result;

Summer 2016 CSE373: Data Structures & Algorithms 36

In Java

class VecAdd extends java.lang.Thread {
int lo; int hi; int[] res; int[] arrl; int[] arr2;
VecAdd (int 1,int h,int[] r,int[] al,int[] a2) { }
protected void run /() {
1f(hi - lo < SEQUENTIAL CUTOFF) {
for(int i=lo; 1 < hi; i++)

res[1] = arrl[i] + arr2[i];
} else {
int mid = (hi+lo)/2;

VecAdd left = new VecAdd(lo,mid, res,arrl,arr?);
VecAdd right= new VecAdd(mid, hi,res,arrl,arr?2);
left.start () ;
right.run() ;
left.join () ;
}
}
}

int[] add(int[] arrl, 1int[] arr2) {
assert (arrl.length == arrZ2.length);
int[] ans = new 1ntlarrl.length];

(new VecAdd (0,arr.length,ans,arrl,arr2) .run();
return ans;

}

Summer 2016 CSE373: Data Structures & Algorithms 37

Maps and reductions

Maps and reductions: the “workhorses” of parallel
programming

— By far the two most important and common patterns

— Learn to recognize when an algorithm can be written in
terms of maps and reductions

— Use maps and reductions to describe (parallel) algorithms

— Programming them becomes “trivial” with a little practice
* Exactly like sequential for-loops seem second-nature

Beyond maps and reductions

* Some problems are “inherently sequential”
“Nine women can’t make a baby in one month”

* But not all parallelizable problems are maps and reductions

* If had one more lecture, would show “parallel prefix”, a
clever algorithm to parallelize the problem that this
sequential code solves

input G 4 16 10 16 14 2 8
output B 10 26 36 52 66 68 76

int[] prefix sum(int[] input) {
int[] output = new int[input.length];
output [0] = input[0];
for(int 1=1; 1 < 1nput.length; 1++)
output[i] = output[i-1l]+inputli];

return output;
Summer 2016 } 39

Analyzing algorithms

* Like all algorithms, parallel algorithms should
be:
— Correct
— Efficient

e For our algorithms so far, correctness is
“obvious” so we’ll focus on efficiency
— Want asymptotic bounds

— Want to analyze the algorithm without regard to a
specific number of processors

— Here: Identify the “best we can do” if the
underlying thread-scheduler does its part

Work and Span

Let T, be the running time if there are P processors available
Two key measures of run-time:

* Work: How long it would take 1 processor =T
— Just “sequential-ize” the recursive forking

* Span: How long it would take infinity processors =T
— The longest dependence-chain

— Example: O(1og n) for summing an array
* Notice having > n/2 processors is no additional help

Summer 2016 CSE373: Data Structures & Algorithms 41

Our simple examples

* Picture showing all the “stuff that happens” during
a reduction or a map: it’s a (conceptual!) DAG

/'\.

divide

base cases

combine
results

Connecting to performance

Recall: T, = running time if there are P processors available

Work =T, = sum of run-time of all nodes in the DAG
— That lonely processor does everything
— Any topological sort is a legal execution
— O(n) for maps and reductions

Span = T_ = sum of run-time of all nodes on the most-
expensive path in the DAG

— Note: costs are on the nodes not the edges

— Our infinite army can do everything that is ready to be done,
but still has to wait for earlier results

— O(log n) for simple maps and reductions

Speed-up

Parallel algorithms is about decreasing span without
increasing work too much

* Speed-up on P processors: T, / T,

* Parallelism is the maximum possible speed-up: T, /T,
— At some point, adding processors won’t help
— What that point is depends on the span

* |In practice we have P processors. How well can we do?
— We cannot do better than O(T) (“must obey the span”)
— We cannot do better than O(T, / P) (“must do all the work”)

— Not shown: With a “good thread scheduler”, can do this well (within a
constant factor of optimal!)

Examples

T, = O(max((T,/P),T.))

* |n the algorithms seen so far (e.g., sum an array):
— T,=0(n)
— T,.=0(logn)
— So expect (ignoring overheads): T, = O(max(n/P, 1og n))

* Suppose instead:
— T,=0(n?)
— T,=0(n)
— So expect (ignoring overheads): T, = O(max(n?/P, n))

Amdahl’s Law (mostly bad news)

e So far: analyze parallel programs in terms of work
and span

* |n practice, typically have parts of programs that
parallelize well...

— Such as maps/reductions over arrays
...and parts that don’t parallelize at all

— Such as reading a linked list, getting input, doing
computations where each needs the previous step, etc.

Amdahl’s Law (mostly bad news)

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then: T,=5S+(1-S)=1
Suppose parallel portion parallelizes perfectly (generous assumption)
Then: T,=S+(1-S)/P

So the overall speedup with P processors is (Amdahl’s Law):
T,/T, =1/(S+(1-S)/P)

And the parallelism (infinite processors) is:
T,/T,=1/S

Summer 2016 CSE373: Data Structures & Algorithms 47

Why such bad news

T,/T, =1/(S+(1-S)/P) T,/T,=1/S

e Suppose 33% of a program’s execution is sequential
— Then a billion processors won’t give a speedup over 3

e Suppose you miss the good old days (1980-2005) where
12ish years was long enough to get 100x speedup

— Now suppose in 12 years, clock speed is the same but you get
256 processors instead of 1

— For 256 processors to get at least 100x speedup, we need
100=1/(S + (1-S)/256)
Which means S =.0061 (i.e., 99.4% perfectly parallelizable)

Summer 2016 CSE373: Data Structures & Algorithms 48

All is not lost

Amdahl’s Law is a bummer!
— Unparallelized parts become a bottleneck very quickly
— But it doesn’t mean additional processors are worthless

 We can find new parallel algorithms

— Some things that seem sequential are actually
parallelizable

 We can change the problem or do new things

— Example: Video games use tons of parallel processors
* They are not rendering 10-year-old graphics faster
* They are rendering more beautiful(?) monsters

Summer 2016 CSE373: Data Structures & Algorithms

49

