

CSE373: Data Structures and Algorithms Lecture 2: Math Review; Algorithm Analysis

Hunter Zahn Summer 2016

Today

- Finish discussing stacks and queues
- Review math essential to algorithm analysis
 - Proof by induction
 - Powers of 2
 - Binary numbers
 - Exponents and logarithms
- Begin analyzing algorithms
 - Using asymptotic analysis (continue next time)

Prove that $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1}-1$

Background on Induction

- Type of mathematical proof
- Typically used to establish a given statement for all natural numbers (integers > 0)
- Proof is a sequence of deductive steps
 - 1. Show the statement is true for the first number.
 - 2. Show that if the statement is true for any one number, this implies the statement is true for the next number.
 - 3. If so, we can infer that the statement is true for all numbers.

Think about climbing a ladder

1. Show you can get to the first rung (base case)

2. Show you can get between rungs (inductive step)

3. Now you can climb forever.

5 steps to inductive proofs

- 1. State what you're trying to prove.
 - Suppose that P(n) is some predicate (mention n)
 - Ex:

"Let P(n) be ...

Will prove that P(n) is true for every $n \ge x$ "

- 2. Prove the "base case"
 - Show that P(x) is true
- 3. Inductive Hypothesis (IH)
 - Assume that P(k) is true for some arbitrary integer k in the set of integers you're looking at
- 4. Inductive Step
 - Show that P(k + 1) is true.
 - Be sure to use the Inductive Hypothesis, and point out where you use it!
- 5. Conclusion Summer 2016

Why you should care

- Induction turns out to be a useful technique
 - AVL trees
 - Heaps
 - Graph algorithms
 - Can also prove things like $3^n > n^3$ for $n \ge 4$
- Exposure to rigorous thinking

Prove that $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$

P(n) = "the sum of the first *n* powers of 2 (starting at 0) is 2ⁿ-1"

Theorem: P(n) holds for all $n \ge 1$

Proof: By induction on *n*

- Base case: n=1. Sum of first 1 power of 2 is 2⁰, which equals 1.
 And for n=1, 2ⁿ-1 equals 1.
- Inductive case:
 - Assume the sum of the first *k* powers of 2 is 2^{k} -1
 - Show the sum of the first (k+1) powers of 2 is 2^{k+1}-1 Using assumption, sum of the first (k+1) powers of 2 is (2^k-1) + 2^{(k+1)-1} = (2^k-1) + 2^k = 2^{k+1}-1

Powers of 2

- A bit is 0 or 1 (just two different "letters" or "symbols")
- A sequence of *n* bits can represent 2^n distinct things
 - For example, the numbers 0 through 2ⁿ-1
- 2¹⁰ is 1024 ("about a thousand", kilo in CSE speak)
- 2²⁰ is "about a million", mega in CSE speak
- 2³⁰ is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is 2⁶³-1

Therefore

Could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with 250-300 bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

- Since so much is binary login CS almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow *very* quickly, logarithms grow *very* slowly

See Excel file for plot data – play with it!

Summer 2016

- Since so much is binary log in CS almost always means log₂
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow *very* quickly, logarithms grow *very* slowly

CSE373: Data Structures & Algorithms

- Since so much is binary log in CS almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow *very* quickly, logarithms grow *very* slowly

- Since so much is binary log in CS almost always means log₂
- Definition: $\log_2 \mathbf{x} = \mathbf{y}$ if $\mathbf{x} = 2^{\mathbf{y}}$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow *very* quickly, logarithms grow *very* slowly

Properties of logarithms

- $\log(A*B) = \log A + \log B$ - So $\log(N^k) = k \log N$
- log(A/B) = log A log B
- log(log x) is written log log x
 Grows as slowly as 2^{2^y} grows quickly
- (log x) (log x) is written log^2x
 - It is greater than $\log x$ for all x > 2
 - It is not the same as log log x

Log base doesn't matter much!

"Any base B log is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log_2 \mathbf{x} = 3.22 \log_{10} \mathbf{x}$
- In general,

 $\log_{B} x = (\log_{A} x) / (\log_{A} B)$

Floor and ceiling

 $\begin{bmatrix} X \end{bmatrix} \quad \text{Floor function: the largest integer} \le X$ $\begin{bmatrix} 2.7 \end{bmatrix} = 2 \quad \begin{bmatrix} -2.7 \end{bmatrix} = -3 \quad \begin{bmatrix} 2 \end{bmatrix} = 2$ $\begin{bmatrix} X \end{bmatrix} \quad \text{Ceiling function: the smallest integer} \ge X$ $\begin{bmatrix} 2.3 \end{bmatrix} = 3 \quad \begin{bmatrix} -2.3 \end{bmatrix} = -2 \quad \begin{bmatrix} 2 \end{bmatrix} = 2$

CSE373: Data Structures & Algorithms

Floor and ceiling properties

1.
$$X - 1 < [X] \le X$$

2. $X \le [X] < X + 1$
3. $[n/2] + [n/2] = n$ if n is an integer

Algorithm Analysis

As the "size" of an algorithm's input grows

(integer, length of array, size of queue, etc.):

- How much longer does the algorithm take (time)
- How much more memory does the algorithm need (space)

Because the curves we saw are so different, often care about only "which curve we are like"

Separate issue: Algorithm *correctness* – does it produce the right answer for all inputs

- Usually more important, naturally

• What does this pseudocode return?

```
x := 0;
for i=1 to N do
  for j=1 to i do
      x := x + 3;
return x;
```

• Correctness: For any $N \ge 0$, it returns...

• What does this pseudocode return?

```
x := 0;
for i=1 to N do
  for j=1 to i do
      x := x + 3;
return x;
```

- Correctness: For any $N \ge 0$, it returns 3N(N+1)/2
- Proof: By induction on *n*
 - P(n) = after outer for-loop executes *n* times, **x** holds 3n(n+1)/2
 - Base: n=0, returns 0
 - Inductive: From P(k), x holds 3k(k+1)/2 after k iterations.
 Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)
 = (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2

• How long does this pseudocode run?

```
x := 0;
for i=1 to N do
  for j=1 to i do
      x := x + 3;
return x;
```

- Running time: For any $N \ge 0$,
 - Assignments, additions, returns take "1 unit time"
 - Loops take the sum of the time for their iterations
- So: 2 + 2*(number of times inner loop runs)
 - And how many times is that...

• How long does this pseudocode run?

```
x := 0;
for i=1 to N do
  for j=1 to i do
      x := x + 3;
return x;
```

- The total number of loop iterations is N*(N+1)/2
 - This is a very common loop structure, worth memorizing
 - Proof is by induction on N, known for centuries
 - This is proportional to N^2 , and we say $O(N^2)$, "big-Oh of"
 - For large enough N, the N and constant terms are irrelevant, as are the first assignment and return
 - See plot... N*(N+1)/2 vs. just N²/2

Lower-order terms don't matter

N*(N+1)/2 vs. just N²/2

Geometric interpretation

- Area of square: N*N
- Area of lower triangle of square: N*N/2
- Extra area from squares crossing the diagonal: N*1/2
- As N grows, fraction of "extra area" compared to lower triangle goes to zero (becomes insignificant)

Big-O: Common Names

constant (same as $O(k)$ for constant k)
logarithmic
linear
"n log <i>n</i> "
quadratic
cubic
polynomial (where is <i>k</i> is any constant)
exponential (where k is any constant > 1)

Note: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^n for some k>1"

- A savings account accrues interest exponentially (k=1.01?)
- If you don't know k, you probably don't know it's exponential

Announcements

- TA office hours have been decided
 - Held at the 4th floor breakouts in CSE
 - Whiteboard area near the stairs/elevator
- HW1 released
 - Due Friday, July 2 at 11:00PM
 - See late day policy
- Optional *section* Thursdays 2:00 3:00pm
 - Room TBD
 - Getting started on HW1, Induction, Eclipse
 - Bring Questions!
 - Materials will be posted online