Announcements

HW4: Due tomorrow!

- Final in EXACTLY 2 weeks.
 - Start studying

CSE373: Data Structure & Algorithms Beyond Comparison Sorting

Hunter Zahn Summer 2016

Introduction to Sorting

- Stacks, queues, priority queues, and dictionaries all focused on providing one element at a time
- But often we know we want "all the things" in some order
 - Humans can sort, but computers can sort fast
 - Very common to need data sorted somehow
 - Alphabetical list of people
 - List of countries ordered by population
 - Search engine results by relevance
 - ...
- Algorithms have different asymptotic and constant-factor tradeoffs
 - No single "best" sort for all scenarios
 - Knowing one way to sort just isn't enough

More Reasons to Sort

General technique in computing:

Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

- Find the kth largest in constant time for any k
- Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on

- How often the data will change (and how much it will change)
- How much data there is

The main problem, stated carefully

For now, assume we have *n* comparable elements in an array and we want to rearrange them to be in increasing order

Input:

- An array A of data records
- A key value in each data record
- A comparison function

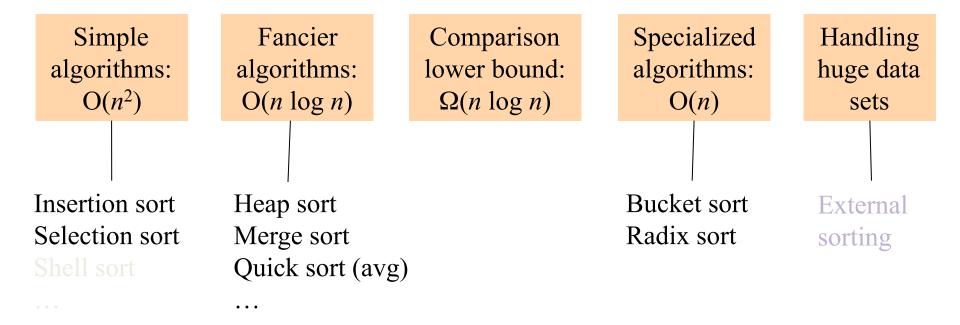
Effect:

- Reorganize the elements of A such that for any i and j,
- $\text{ if } i < j \text{ then } A[i] \leq A[j]$
- (Also, A must have exactly the same data it started with)
- Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:



Insertion Sort

- Idea: At step k, put the kth element in the correct position among the first k elements
- Alternate way of saying this:
 - Sort first two elements
 - Now insert 3rd element in order
 - Now insert 4th element in order
 - **—** ...
- "Loop invariant": when loop index is i, first i elements are sorted
- Time?

```
Best-case O(n) Worst-case O(n<sup>2</sup>) "Average" case O(n<sup>2</sup>) start sorted start reverse sorted (see text)
```

Selection sort

- Idea: At step k, find the smallest element among the not-yetsorted elements and put it at position k
- Alternate way of saying this:
 - Find smallest element, put it 1st
 - Find next smallest element, put it 2nd
 - Find next smallest element, put it 3rd
 - **—** ...
- "Loop invariant": when loop index is i, first i elements are the i smallest elements in sorted order
- Time?

```
Best-case O(n^2) Worst-case O(n^2) "Average" case O(n^2)

Always T(1) = 1 and T(n) = n + T(n-1)
```

Bubble Sort

- Not intuitive It's unlikely that you'd come up with bubble sort
- It doesn't have good asymptotic complexity: $O(n^2)$
- It's not particularly efficient with respect to common factors

Basically, almost everything it is good at some other algorithm is at least as good at

Heap sort

- Sorting with a heap is easy:
 - insert each arr[i], or better yet use
 buildHeap

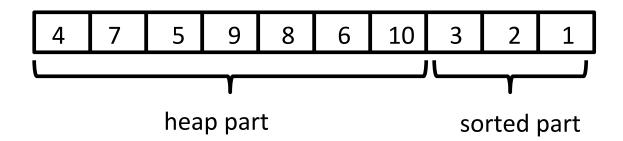
```
- for(i=0; i < arr.length; i++)
arr[i] = deleteMin();</pre>
```

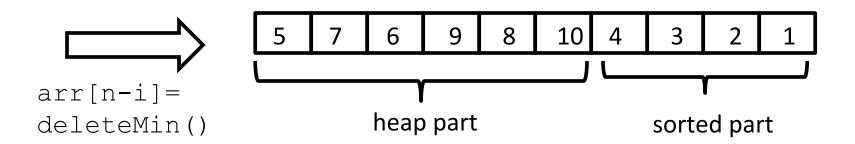
- Worst-case running time: O(n log n)
- We have the array-to-sort and the heap
 - So this is not an in-place sort
 - There's a trick to make it in-place...

In-place heap sort sort

But this reverse sorts – how would you fix that?

- Treat the initial array as a heap (via buildHeap)
- When you delete the ith element, put it at arr[n-i]
 - That array location isn't needed for the heap anymore!





Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

- Mergesort: Sort the left half of the elements (recursively)
 Sort the right half of the elements (recursively)
 Merge the two sorted halves into a sorted whole
- 2. Quicksort: Pick a "pivot" element

 Divide elements into less-than pivot

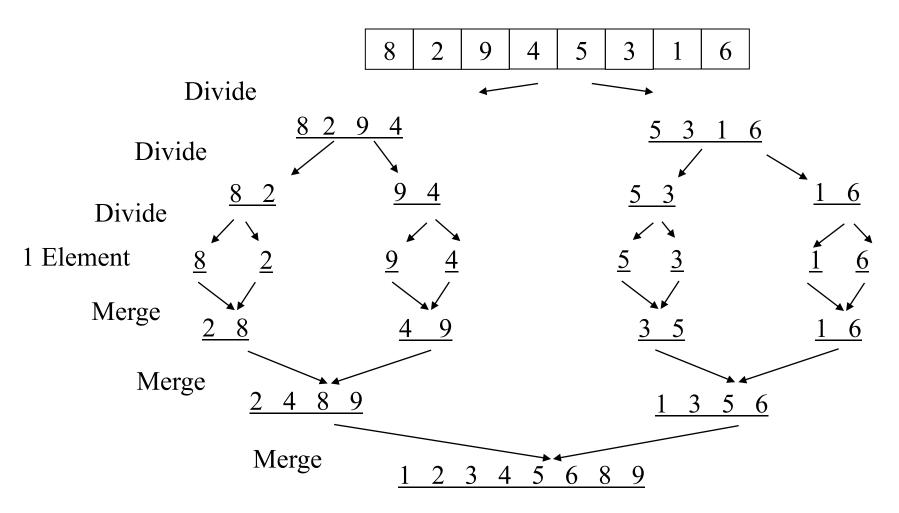
 and greater-than pivot

 Sort the two divisions (recursively on each)

 Answer is sorted-less-than then pivot then

 sorted-greater-than

Example, Showing Recursion



Quicksort

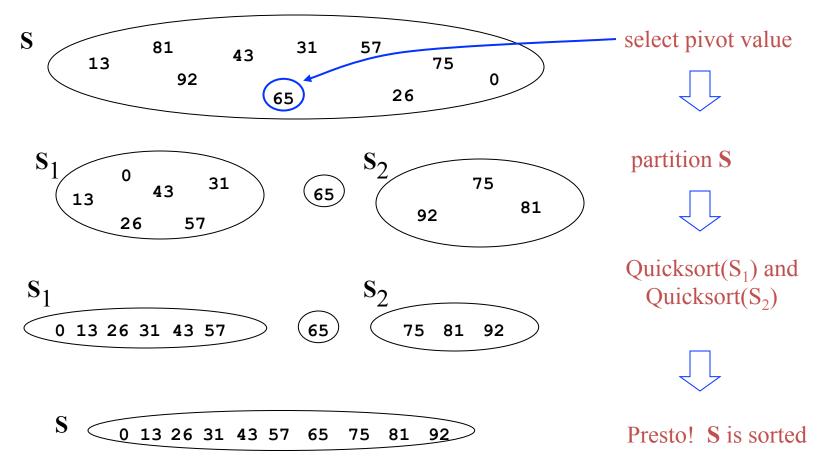
- Also uses divide-and-conquer
 - Recursively chop into two pieces
 - Instead of doing all the work as we merge together,
 we will do all the work as we recursively split into halves
 - Unlike merge sort, does not need auxiliary space
- $O(n \log n)$ on average \odot , but $O(n^2)$ worst-case \odot
- Faster than merge sort in practice?
 - Often believed so
 - Does fewer copies and more comparisons, so it depends on the relative cost of these two operations!

Quicksort Overview

- 1. Pick a pivot element
- 2. Partition all the data into:
 - A. The elements less than the pivot
 - B. The pivot
 - C. The elements greater than the pivot
- 3. Recursively sort A and C
- 4. The answer is, "as simple as A, B, C"

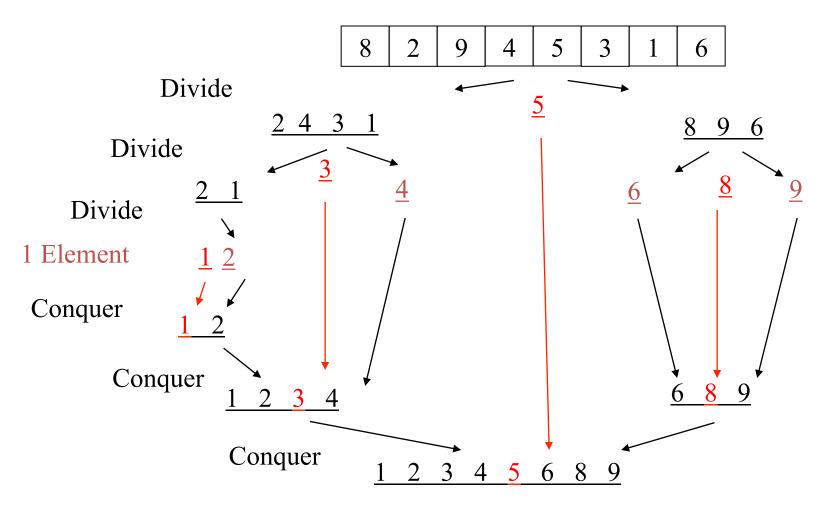
(Alas, there are some details lurking in this algorithm)

Think in Terms of Sets



[Weiss]

Example, Showing Recursion



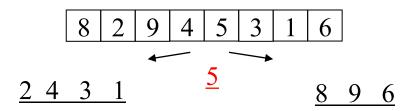
Details

Have not yet explained:

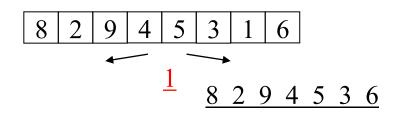
- How to pick the pivot element
 - Any choice is correct: data will end up sorted
 - But as analysis will show, want the two partitions to be about equal in size
- How to implement partitioning
 - In linear time
 - In place

Pivots

- Best pivot?
 - Median
 - Halve each time



- Worst pivot?
 - Greatest/least element
 - Problem of size n 1
 - $-O(n^2)$



Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)...

- Pick arr[lo] or arr[hi-1]
 - Fast, but worst-case occurs with mostly sorted input
- Pick random element in the range
 - Does as well as any technique, but (pseudo)random number generation can be slow
 - Still probably the most elegant approach
- Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi-1)/2]
 - Common heuristic that tends to work well

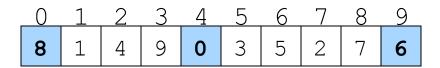
Partitioning

- Conceptually simple, but hardest part to code up correctly
 - After picking pivot, need to partition in linear time in place
- One approach (there are slightly fancier ones):
 - 1. Swap pivot with arr[lo]
 - 2. Use two fingers i and j, starting at lo+1 and hi-1
 - 3. while (i < j)
 if (arr[j] > pivot) j- else if (arr[i] < pivot) i++
 else swap arr[i] with arr[j]</pre>
 - 4. Swap pivot with arr[i] *

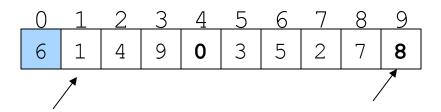
^{*}skip step 4 if pivot ends up being least element

• Step one: pick pivot as median of 3

$$- lo = 0, hi = 10$$

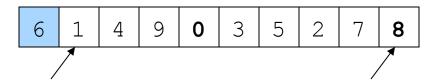


Step two: move pivot to the lo position

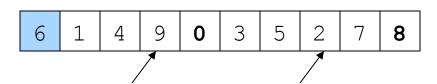


Often have more than one swap during partition – this is a short example

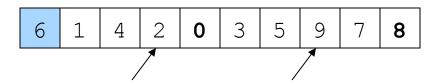
Now partition in place



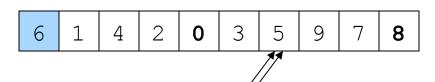
Move fingers



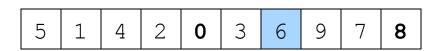
Swap



Move fingers



Move pivot



Analysis

Best-case: Pivot is always the median

$$T(0)=T(1)=1$$

 $T(n)=2T(n/2) + n$ -- linear-time partition
Same recurrence as mergesort: $O(n \log n)$

Worst-case: Pivot is always smallest or largest element

$$T(0)=T(1)=1$$

 $T(n) = 1T(n-1) + n$

Basically same recurrence as selection sort: $O(n^2)$

- Average-case (e.g., with random pivot)
 - $O(n \log n)$, not responsible for proof (in text)

Cutoffs

- For small n, all that recursion tends to cost more than doing a quadratic sort
 - Remember asymptotic complexity is for large n
- Common engineering technique: switch algorithm below a cutoff
 - Reasonable rule of thumb: use insertion sort for n < 10
- Notes:
 - Could also use a cutoff for merge sort
 - Cutoffs are also the norm with parallel algorithms
 - Switch to sequential algorithm
 - None of this affects asymptotic complexity

Cutoff skeleton

```
void quicksort(int[] arr, int lo, int hi) {
   if(hi - lo < CUTOFF)
     insertionSort(arr, lo, hi);
   else
   ...
}</pre>
```

Notice how this cuts out the vast majority of the recursive calls

- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Simple Comparison Specialized Handling Fancier algorithms: algorithms: lower bound: algorithms: huge data $O(n^2)$ $\Omega(n \log n)$ $O(n \log n)$ O(n)sets Insertion sort Bucket sort Heap sort External Selection sort Merge sort Radix sort sorting Quick sort (avg)

How Fast Can We Sort?

- Heapsort & mergesort have O(n log n) worst-case running time
- Quicksort has $O(n \log n)$ average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as O(n) or O(n log log n)
 - Instead: we know that this is impossible
 - **Assuming our comparison model**: The only operation an algorithm can perform on data items is a 2-element comparison

A General View of Sorting

- Assume we have n elements to sort
 - For simplicity, assume none are equal (no duplicates)
- How many permutations of the elements (possible orderings)?
- Example, n=3
 a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]<a[0]<a[1] a[2]<a[0]<a[0]
- In general, n choices for least element, n-1 for next, n-2 for next,
 ...
 - n(n-1)(n-2)...(2)(1) = n! possible orderings

Counting Comparisons

- So every sorting algorithm has to "find" the right answer among the n! possible answers
 - Starts "knowing nothing", "anything is possible"
 - Gains information with each comparison
 - Intuition: Each comparison can at best eliminate half the remaining possibilities
 - Must narrow answer down to a single possibility

What we can show:

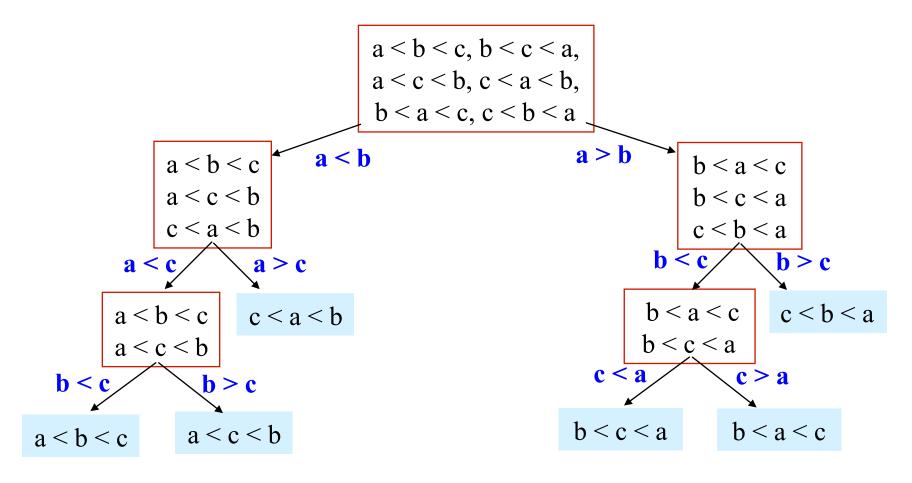
Any sorting algorithm must do at least $(1/2)n\log n - (1/2)n$ (which is $\Omega(n \log n)$) comparisons

Otherwise there are at least two permutations among the n!
 possible that cannot yet be distinguished, so the algorithm would
 have to guess and could be wrong [incorrect algorithm]

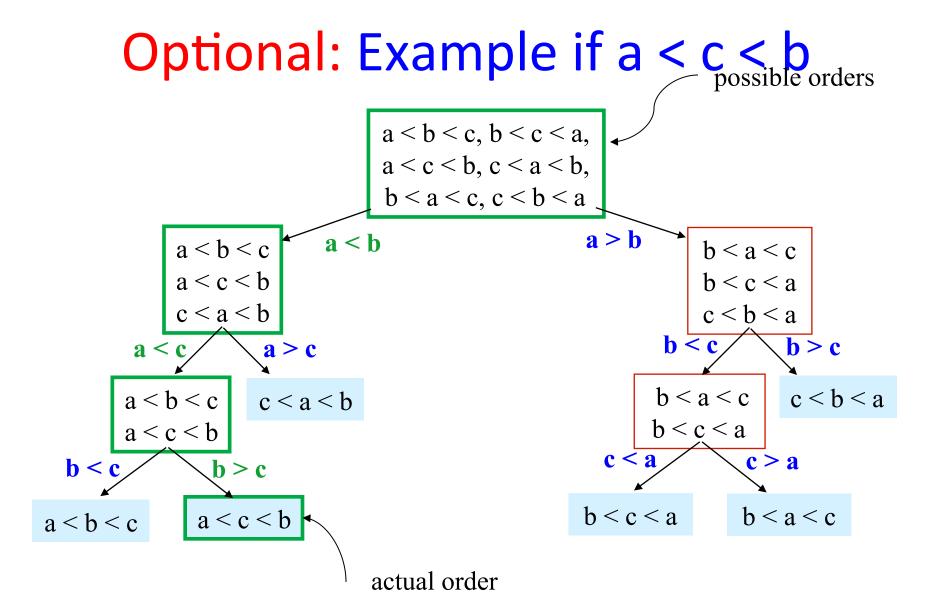
Optional: Counting Comparisons

- Don't know what the algorithm is, but it cannot make progress without doing comparisons
 - Eventually does a first comparison "is a < b?"
 - Can use the result to decide what second comparison to do
 - Etc.: comparison k can be chosen based on first k-1 results
- Can represent this process as a decision tree
 - Nodes contain "set of remaining possibilities"
 - Root: None of the n! options yet eliminated
 - Edges are "answers from a comparison"
 - The algorithm does not actually build the tree; it's what our proof uses to represent "the most the algorithm could know so far" as the algorithm progresses

Optional: One Decision Tree for n=3



- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree



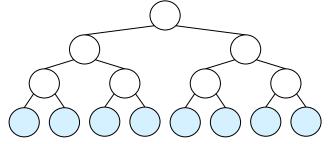
Optional: What the Decision Tree Tells Us

- A binary tree because each comparison has 2 outcomes
 - (We assume no duplicate elements)
 - (Would have 1 outcome if algorithm asks redundant questions) This means that poorly implemented algorithms could yield deeper trees (categorically bad)
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a different leaf
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with n! leaves
 - So no algorithm can have worst-case running time better than the height of a tree with n! leaves
 - Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm's decision tree

Optional: Where are we

- **Proven**: No comparison sort can have worst-case running time better than the height of a binary tree with *n*! leaves
 - A comparison sort could be worse than this height, but it cannot be better
- Now: a binary tree with n! leaves has height $\Omega(n \log n)$
 - Height could be more, but cannot be less
 - Factorial function grows very quickly
- Conclusion: Comparison sorting is Ω ($n \log n$)
 - An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time

Optional: Height lower bound



- The height of a binary tree with L leaves is at least log₂ L
- So the height of our decision tree, h:

```
h \ge \log_2(n!) property of binary trees

= \log_2(n*(n-1)*(n-2)...(2)(1)) definition of factorial

= \log_2 n + \log_2(n-1) + ... + \log_2 1 property of logarithms

\ge \log_2 n + \log_2(n-1) + ... + \log_2(n/2) drop smaller terms

\ge \log_2(n/2) + \log_2(n/2) + ... + \log_2(n/2) shrink terms to \log_2(n/2)

= (n/2)\log_2(n/2) arithmetic

= (n/2)(\log_2 n - \log_2 2) property of logarithms

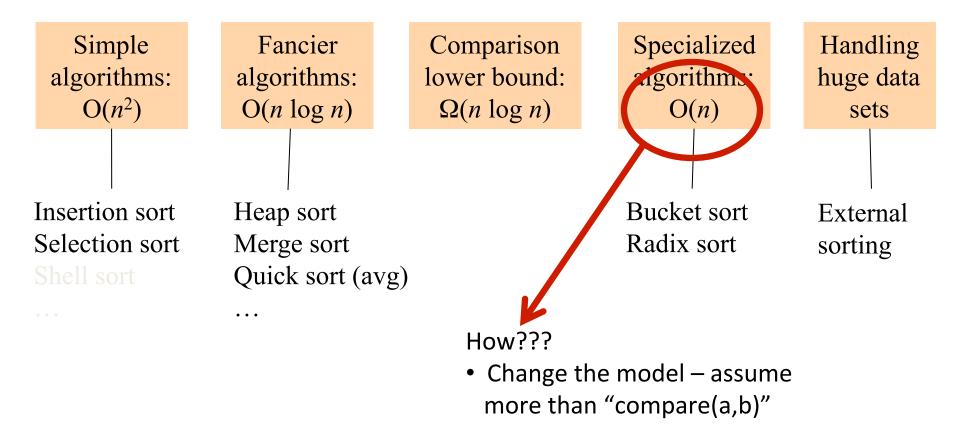
= (1/2)n\log_2 n - (1/2)n arithmetic

"=" \Omega(n \log n)
```

Height, or # of comparisons made bounded by n log n

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...



BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and *K* (or any small range):
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

count array							
1	3						
2	1						
3	2						
4	2						
5	3						

• Example:

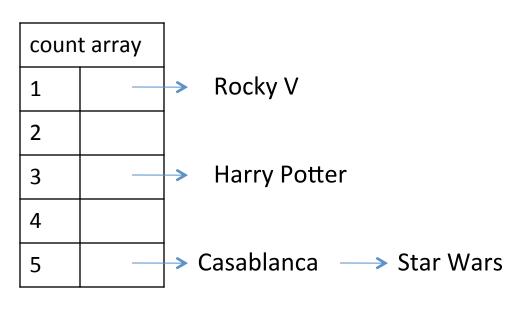
output: 1,1,1,2,3,3,4,4,5,5,5

Analyzing Bucket Sort

- Overall: *O*(*n*+*K*)
 - Linear in n, but also linear in K
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when K is smaller (or not much larger) than n
 - We don't spend time doing comparisons of duplicates
- Bad when K is much larger than n
 - Wasted space; wasted time during linear O(K) pass
- For data in addition to integer keys, use list at each bucket

Bucket Sort with Data

- Most real lists aren't just keys; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, insert in O(1) (at beginning, or keep pointer to last element)



Example: Movie ratings; scale
 1-5;1=bad, 5=excellent

Input=

5: Casablanca

3: Harry Potter movies

5: Star Wars Original Trilogy

1: Rocky V

- •Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
- Easy to keep 'stable'; Casablanca still before Star Wars

Radix sort

- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128

• Idea:

- Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with *least* significant digit
 - Keeping sort stable
- Do one pass per digit
- Invariant: After k passes (digits), the last k digits are sorted

Radix = 10

0	1	2	3	4	5	6	7	8	9
	721		3				537	478	9
			143				67	38	

Input: 478

First pass:

bucket sort by ones digit

Order now:

, , ,

Radix = 10

0	1	2	3	4	5	6	7	8	9
	721		3 143				537 67	478 38	9

0	1	2	3	4	5	6	7	8	9		
3		721	537	143		67	478				
9			38								

Order was:

721

3

143

537

67

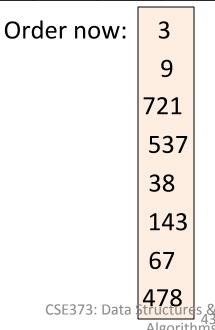
478

38

9

Second pass:

stable bucket sort by tens digit



0	1	2	3	4	5	6	7	8	9
3		721	537	143		67	478		
9			38						

Radix = 10

0	1	2	3	4	5	6	7	8	9			
3 9 38	143			478	537		721					
67						O.	rder n	ow:	3			

Order was:

478

Third pass:

stable bucket sort by 100s digit

Order now: 3
9
38
67
143
478
537
CSE373: Data Structures &

Analysis

Input size: n

Number of buckets = Radix: *B*

Number of passes = "Digits": P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Run-time proportional to: 15*(52 + n)
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations
 - And radix sort can have poor locality properties

Sorting massive data

- Note: If data is on disk (ie too big to fit in main memory), reading and writing are much slower
- Need sorting algorithms that minimize disk access time:
 - Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 - Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access
- Mergesort is the basis of massive sorting
- Mergesort can leverage multiple disks

Last Slide on Sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - Selection sort, Insertion sort (latter linear for mostly-sorted)
 - Good for "below a cut-off" to help divide-and-conquer sorts
- $O(n \log n)$ sorts
 - Heap sort, in-place but not stable nor parallelizable
 - Merge sort, not in place but stable and works as external sort
 - Quick sort, in place but not stable and $O(n^2)$ in worst-case
 - Often fastest, but depends on costs of comparisons/copies
- Ω ($n \log n$) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of possible key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!