Announcements

e HW4: Due tomorrow!

* Final in EXACTLY 2 weeks.
— Start studying

Summer 2016 CSE373: Data Structures & Algorithms

CSE373: Data Structure & Algorithms

Beyond Comparison Sorting

Hunter Zahn
Summer 2016

Summer 2016 CSE373: Data Structures & Algorithms

Introduction to Sorting

Stacks, queues, priority queues, and dictionaries all focused on
providing one element at a time

But often we know we want “all the things” in some order
— Humans can sort, but computers can sort fast

— Very common to need data sorted somehow
* Alphabetical list of people
* List of countries ordered by population
» Search engine results by relevance

Algorithms have different asymptotic and constant-factor trade-
offs

— No single “best” sort for all scenarios
— Knowing one way to sort just isn’t enough

More Reasons to Sort

General technique in computing:
Preprocess data to make subsequent operations faster

Example: Sort the data so that you can
— Find the k" largest in constant time for any k
— Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters
depends on

— How often the data will change (and how much it will change)
— How much data there is

The main problem, stated carefully

For now, assume we have n comparable elements in an array and
we want to rearrange them to be in increasing order

Input:
— An array A of data records
— A key value in each data record
— A comparison function
Effect:
— Reorganize the elements of A such that for any i and j,
— ifi < jthenA[i] = A[j]
— (Also, A must have exactly the same data it started with)
— Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Summer 2016 5 CSE373: Data Structu’res &
Algorithms

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
O(n?) O(n log n) Q(n log n) O(n) sets
Insertion sort Heap sort Bucket sort
Selection sort Merge sort Radix sort

Quick sort (avg)

Visualization

Insertion Sort

« Idea: At step k, put the k" element in the correct position among
the first k elements

e Alternate way of saying this:
— Sort first two elements
— Now insert 3 element in order
— Now insert 4th element in order

 “Loop invariant”: when loop index is i, first 1 elements are sorted

e Time?
Best-case O(n) Worst-case O(n?) “Average” case O(n?)
start sorted start reverse sorted (see text)
Summer 2016 7 CSE373: Data Structures &

Algorithms

Selection sort

* |dea: At step k, find the smallest element among the not-yet-
sorted elements and put it at position k

e Alternate way of saying this:
— Find smallest element, put it 1t
— Find next smallest element, put it 2nd
— Find next smallest element, put it 37

* “Loop invariant”: when loop index is i, first i elements are the 1
smallest elements in sorted order

e Time?
Best-case O(n’?) Worst-case O(n?) “Average” case O(n?)
Always T(1) =1 and T(n) = n + T(n-1)

CSE373: Data Structures &

Summer 2016 8 Algorithms

Bubble Sort

* Not intuitive — It’s unlikely that you’d come up
with bubble sort

* |t doesn’t have good asymptotic complexity:
O(n?)

* |t's not particularly efficient with respect to
common factors

Basically, almost everything it is good at some
other algorithm is at least as good at

Heap sort

e Sorting with a heap is easy:
— insert eacharr[i], or better yet use

buildHeap
— for (i=0; i < arr.length; i++)
arr[i] = deleteMin();

* Worst-case running time: O(n 1og n)

 We have the array-to-sort and the heap
— So this is not an in-place sort
— There’s a trick to make it in-place...

But this reverse sorts —

In-place heap sort sort howwould you fixthatz

— Treat the initial array as a heap (via buildHeap)

— When you delete the ith element, putitatarr[n-i]
* That array location isn’t needed for the heap anymore!

4 |7 | 51 918 6|10 3] 2]1

\ J\ J
[[

heap part sorted part

> s {716 9|s8]w]a]|3] 2]1
\] \ J

arr[n-i]= | |

deleteMin () heap part sorted part

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element
Divide elements into less-than pivot
and greater-than pivot
Sort the two divisions (recursively on each)
Answer is sorted-less-than then pivot then
sorted-greater-than

Example, Showing Recursion

812191453 |1]6

Divide «— T
82 9 4 5 3 1 6
Divide / \ / .
Divid 8 2 9 4 53 1.6
ivide N / N PN 2N
1 Element 8 2 4 5 3 1 6
\/ \/ N W4
Merge "¢ 35 16
Mg 2\48‘9/ v

Merge \/

1 2345 6389

CSE373: Data Structures &

Summer 2016 13 Algorithms

Quicksort

* Also uses divide-and-conquer
— Recursively chop into two pieces

— Instead of doing all the work as we merge together,
we will do all the work as we recursively split into halves

— Unlike merge sort, does not need auxiliary space
* O(n logn)on average ©, but O(n?) worst-case ®

* Faster than merge sort in practice?

— Often believed so

— Does fewer copies and more comparisons, so it depends
on the relative cost of these two operations!

Quicksort Overview

1. Pick a pivot element

2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort Aand C
4. The answer is, “as simple as A, B, C”

(Alas, there are some details lurking in this algorithm)

Think in Terms of Sets

select pivot value

31 57
13 43 4/75
92 0
2

S1 SH partition S
i

Quicksort(S,) and
S1 Sy Quicksort(S,)

S 0 1326 31 43 57 65 75 81 9 Presto! S is sorted

[Weiss]

CSE373: Data Structures &

Summer 2016 16 Algorithms

Example, Showing Recursion

8121914 |53 |1]6

Divide «— 5 —
Divid 24 3 1 B 8 9 6
1vide 4 — -~
.. 2 1 4 6 8 9
Divide
\
1 Element 12
Conquer '[’/
Conquer \ ' v
1 1 2 3 4 6 8 9
Con uer\’ ' —
q 1 23456809
Summer 2016 17 CSE373: Data Structures &

Algorithms

Details

Have not yet explained:

* How to pick the pivot element
— Any choice is correct: data will end up sorted

— But as analysis will show, want the two partitions to
be about equal in size

* How to implement partitioning
— In linear time
— In place

Pivots

e Best pivot? gl2]9]a[s5]3]1]6
— Median “ o
— Halve each time 243 1

8121914[5|3[1]6

 Worst pivot? —
— Greatest/least element - 8294536

— Problem of sizen -1
— 0(n?)

Potential pivot rules

While sorting arr from 1o (inclusive) to hi (exclusive)...

e Pickarr[lo] orarr[hi-1]
— Fast, but worst-case occurs with mostly sorted input

* Pick random element in the range

— Does as well as any technique, but (pseudo)random number
generation can be slow

— Still probably the most elegant approach

e Medianof 3,e.g.,,arr[lo], arr[hi-1], arr[(hi
+1lo0) /2]

— Common heuristic that tends to work well

Partitioning

* Conceptually simple, but hardest part to code up
correctly

— After picking pivot, need to partition in linear time in place

* One approach (there are slightly fancier ones):
1. Swap pivot with arr[lo]
2. Usetwo fingers i and j, starting at lo+1 and hi-1
3. while (i < j)
if (arr[j] > pivot) j--
else if (arr[i] < pivot) i++
else swap arr[i] with arr[j]
4. Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

Example

e Step one: pick pivot as median of 3

—lo=0,h1=10
0 1 2 3 4 5 6 7 8 9
8 (1 (49|03 |5|2|7/|6
e Step two: move pivot to the 1o position
0 1 2 3 4 5 6 7 8 9
6114|9103 |5[2]7]8

Often have more than

Example one swap during partition —

this is a short example

Now partitioninplace [{145 o0l3]51217]8

Move fingers P IR IR P Ry s [y

Swap

Move fingers

Move pivot

Analysis

* Best-case: Pivot is always the median
T(0)=T(1)=1
T(n)=2T(n/2) + n -- linear-time partition
Same recurrence as mergesort: O(n 1og n)

 Worst-case: Pivot is always smallest or largest element
T(0)=T(1)=1
T(n) =1T(n-1) +n
Basically same recurrence as selection sort: O(n?)

* Average-case (e.g., with random pivot)
— O(n 1og n), not responsible for proof (in text)

Cutoffs

For small n, all that recursion tends to cost more than
doing a quadratic sort

— Remember asymptotic complexity is for large n

Common engineering technique: switch algorithm
below a cutoff

— Reasonable rule of thumb: use insertion sort for n < 10

Notes:
— Could also use a cutoff for merge sort

— Cutoffs are also the norm with parallel algorithms
* Switch to sequential algorithm

— None of this affects asymptotic complexity

Cutoff skeleton

void quicksort(int[] arr, int lo, int hi) ({
if(hi - lo < CUTOFF)
insertionSort (arr,lo,hi);
else

Notice how this cuts out the vast majority of the recursive calls
— Think of the recursive calls to quicksort as a tree
— Trims out the bottom layers of the tree

CSE373: Data Structures &

Summer 2016 26 Algorithms

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
O(n?) O(n log n) Q(n log n) O(n) sets
Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting

Quick sort (avg)

How Fast Can We Sort?

Heapsort & mergesort have O(n 1og n) worst-case
running time

Quicksort has O(n 1og n) average-case running time
These bounds are all tight, actually ©(n 1og n)

So maybe we need to dream up another algorithm with a
lower asymptotic complexity, such as O(n) or O(n log
log n)

— Instead: we know that this is impossible

e Assuming our comparison model: The only operation an algorithm
can perform on data items is a 2-element comparison

A General View of Sorting

Assume we have n elements to sort
— For simplicity, assume none are equal (no duplicates)

How many permutations of the elements (possible orderings)?

Example, n=3
a[O]<a[l]<a[2] a[O]<a[2]<a[l] a[l]<a[0]<a[2]
a[l]<a[2]<a[0] a[2]<a[0]<a[l] a[2]<a[l]<a[0]

In general, n choices for least element, n-1 for next, n-2 for next,

— n(n-1)(n-2)...(2)(1) = n! possible orderings

Counting Comparisons

* So every sorting algorithm has to “find” the right answer among
the n! possible answers

— Starts “knowing nothing”, “anything is possible”

— Gains information with each comparison

— Intuition: Each comparison can at best eliminate half the remaining
possibilities

— Must narrow answer down to a single possibility

 What we can show:
Any sorting algorithm must do at least (1/2)nlogn - (1/2)n
(which is Q(n Log n)) comparisons

— Otherwise there are at least two permutations among the n!
possible that cannot yet be distinguished, so the algorithm would
have to guess and could be wrong [incorrect algorithm]

Optional: Counting Comparisons

 Don’t know what the algorithm is, but it cannot make
progress without doing comparisons
— Eventually does a first comparison “isa < b ?"
— Can use the result to decide what second comparison to do
— Etc.: comparison k can be chosen based on first k-1 results

* Canrepresent this process as a decision tree
— Nodes contain “set of remaining possibilities”
* Root: None of the n! options yet eliminated
— Edges are “answers from a comparison”

— The algorithm does not actually build the tree; it's what our
proof uses to represent “the most the algorithm could know so
far” as the algorithm progresses

Summer 2016 31 CSE373: Data Structu.res &
Algorithms

Optional: One Decision Tree for n=3

a<b<c,b<c<a,
a<c<b,c<a<b,
 b<a<c,c<b<a_

a<b<c a<b a>b b<a<c
a<c<b b<c<a
c<a<b c<b<a
Z\ pAN
a<b<c c<a<b b<a<c c<b<a
a<c<b b<£<a
b</&>c C<‘y cC>a
a<b<c a<c<b b<c<a b<a<c

* The leaves contain all the possible orderings of a, b, ¢

* Adifferent algorithm would lead to a different tree

CSE373: Data Structures &

Summer 2016 32 Algorithms

Optional: Example if

a<b<c,b<c<a,
a<c<b,c<a<b,

b<a<c,c<b<a _

a<b<c a<b
a<c<b
c<a<b

a<%/\\3>c

a<b<c
a<c<b

a<b<c

c<a<b

b<% w‘>c

a<c<b

Summer 2016

\ actual order

33

a;F\‘

d<C<

/ possible orders

CSE373: Data Structures &
Algorithms

Optional: What the Decision Tree
Tells Us

* A binary tree because each comparison has 2 outcomes

— (We assume no duplicate elements)

— (Would have 1 outcome if algorithm asks redundant
q UeStionS) This means that poorly implemented algorithms could yield deeper trees (categorically bad)

* Because any data is possible, any algorithm needs to ask
enough questions to produce all n! answers
— Each answer is a different leaf
— So the tree must be big enough to have n! leaves

— Running any algorithm on any input will at best correspond to
a root-to-leaf path in some decision tree with n! leaves

— So no algorithm can have worst-case running time better than
the height of a tree with n! leaves

* Worst-case number-of-comparisons for an algorithm is an input
leading to a longest path in algorithm’s decision tree

Summer 2016 CSE373: Data Structures & Algorithms

Optional: Where are we

* Proven: No comparison sort can have worst-case running time
better than the height of a binary tree with n! leaves

— A comparison sort could be worse than this height, but it cannot
be better

* Now: a binary tree with n! leaves has height Q(n 1og n)
— Height could be more, but cannot be less
— Factorial function grows very quickly

* Conclusion: Comparison sorting is £ (n Log n)

— An amazing computer-science result: proves all the clever
programming in the world cannot comparison-sort in linear time

CSE373: Data Structures &

Summer 2016 35 Algorithms

Optional: Height lower bound

* The height of a binary tree with L leaves is at least 1og, L
* So the height of our decision tree, h:

h = log, (n!)
= log, (n*(n-1)*(n-2)...(2)(1))
=log,n +1log,(n-1)+..+1log,1 property of logarithms
=log,n +1log,(n-1) +..+1log, (n/2)
= log, (n/2) +1log, (n/2) +...+log, (n/2) shrink terms to 1og, (n/2)

=(n/2)1og, (n/2) arithmetic
=(n/2)(log, n - 1og, 2) property of logarithms
=(1/2)nlog, n = (1/2)n arithmetic

“=“Q (n 1logn)
Height, or # of comparisons made bounded by n 1og n

Summer 2016 36 CSE373: Data Structures &

Algorithms

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: ' huge data
O(n?) O(n log n) Q(n log n) sets
Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting

Quick sort (avg)

How???
* Change the model —assume
more than “compare(a,b)”

Summer 2016 37 CSE373: Data Structu.res &
Algorithms

BucketSort (a.k.a. BinSort)

* |f all values to be sorted are known to be integers
between 1 and K (or any small range):
— Create an array of size K
— Put each element in its proper bucket (a.k.a. bin)
— If data is only integers, no need to store more than a count
of how times that bucket has been used

e Qutput result via linear pass through array of buckets

1 3 K=5

input (5,1,3,4,3,2,1,1,5,4,5)

output: 1,1,1,2,3,3,4,4,5,5,5

NP |WIN
WININ|I—-

Analyzing Bucket Sort

Overall: O(n+K)

— Linear in n, but also linear in K

— Q(n log n) lower bound does not apply because this is not
a comparison sort

Good when Kis smaller (or not much larger) than n
— We don’t spend time doing comparisons of duplicates

Bad when Kis much larger than n
— Wasted space; wasted time during linear O(K) pass

For data in addition to integer keys, use list at each
bucket

Bucket Sort with Data

 Most real lists aren’t just keys; we have data
* Each bucket is a list (say, linked list)

 To add to a bucket, insert in O(1) (at beginning, or keep
pointer to last element)

e Example: Movie ratings; scale
count array 1-5:1=bad, 5=excellent

1 —+> RockyV Input=

5: Casablanca

—1> Harry Potter 3: Harry Potter movies

2
3
4 5: Star Wars Original Trilogy
5

—+> Casablanca ———> Star Wars 1: Rocky V

*Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
*Easy to keep ‘stable’; Casablanca still before Star Wars

Radix sort

* Radix = “the base of a number system”
— Examples will use 10 because we are used to that

— In implementations use larger numbers
* For example, for ASCII strings, might use 128

° |dea:

— Bucket sort on one digit at a time
 Number of buckets = radix
» Starting with /east significant digit
» Keeping sort stable
— Do one pass per digit
— Invariant: After k passes (digits), the last k digits
are sorted

Radix = 10

Input: 478
537
9
721
3
38
143
67

Example

1 3 7 8 9

721 3 537 | 478 |9

143 67 |38

Order now: | 721

First pass: 3
bucket sort by ones digit 143
537
67
478
38

Example

Radix = 10

Order was:

1| 2]3]4 6 | 7|8
721 3 537 | 478
143 67 | 38
— =
1|1 2]3]4 6 | 7|8
721 | 537 | 143 67 |478
38

721

143
537
67
478
38

Second pass:

stable bucket sort by tens digit

Order now: | 3

721
537
38
143
67

478

Example

Radix = 10

Order was:

721
537
38
143
67
478

0 1 2 3 4 5 6 7
3 721 | 537 | 143 67 1478
9 38
0 1 2 3 4 5 6 7 9
3 143 478 | 537 721
9
38
67 Order now:| 3
9
Third pass: 38
stable bucket sort by 100s digit 67
143
478
537

/21

Analysis

Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)
Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often

not
— Example: Strings of English letters up to length 15
* Run-time proportional to: 15*(52 + n)
* Thisis less than nlog n only if n > 33,000
* Of course, cross-over point depends on constant factors of the

implementations
— And radix sort can have poor locality properties

Sorting massive data

* Note: If data is on disk (ie too big to fit in main memory),
reading and writing are much slower

* Need sorting algorithms that minimize disk access
time:
— Quicksort and Heapsort both jump all over the array,
leading to expensive random disk accesses

— Mergesort scans linearly through arrays, leading to
(relatively) efficient sequential disk access

* Mergesort is the basis of massive sorting

* Mergesort can leverage multiple disks

Fall 2013

46

Last Slide on Sorting

Simple O(n?) sorts can be fastest for small n
— Selection sort, Insertion sort (latter linear for mostly-sorted)
— Good for “below a cut-off” to help divide-and-conquer sorts
O(n 1log n) sorts
— Heap sort, in-place but not stable nor parallelizable
— Merge sort, not in place but stable and works as external sort

— Quick sort, in place but not stable and O(n?) in worst-case
» Often fastest, but depends on costs of comparisons/copies

Q (n 1og n) is worst-case and average lower-bound for
sorting by comparisons

Non-comparison sorts

— Bucket sort good for small number of possible key values

— Radix sort uses fewer buckets and more phases

Best way to sort? It depends!

