Announcements

* HW4: 1 day extension
— Now due on Saturday, July 6 at 11pm
— NOT an extra late day

e No review session tomorrow

CSE373: Data Structure & Algorithms

Comparison Sorting

Hunter Zahn
Summer 2016

Summer 2016 CSE373: Data Structures & Algorithms

Introduction to Sorting

Stacks, queues, priority queues, and dictionaries all focused on
providing one element at a time

But often we know we want “all the things” in some order
— Humans can sort, but computers can sort fast

— Very common to need data sorted somehow
* Alphabetical list of people
* List of countries ordered by population
» Search engine results by relevance

Algorithms have different asymptotic and constant-factor trade-
offs

— No single “best” sort for all scenarios
— Knowing one way to sort just isn’t enough

More Reasons to Sort

General technique in computing:
Preprocess data to make subsequent operations faster

Example: Sort the data so that you can
— Find the k" largest in constant time for any k
— Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters
depends on

— How often the data will change (and how much it will change)
— How much data there is

The main problem, stated carefully

For now, assume we have n comparable elements in an array and
we want to rearrange them to be in increasing order

Input:
— An array A of data records
— A key value in each data record
— A comparison function
Effect:
— Reorganize the elements of A such that for any i and j,
— ifi < jthenA[i] = A[j]
— (Also, A must have exactly the same data it started with)
— Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Summer 2016 5 CSE373: Data Structu’res &
Algorithms

Variations on the Basic Problem

1. Maybe elements are in a linked list (could convert to array and
back in linear time, but some algorithms needn’t do so)

2. Maybe ties need to be resolved by “original array position”

— Sorts that do this naturally are called stable sorts
. Equal keys appear in the same output order as input

— Others could tag each item with its original position and adjust
comparisons accordingly (non-trivial constant factors)

3. Maybe we must not use more than O(1) “auxiliary space”
— Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare
— Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory
— Use an “external sorting” algorithm

Summer 2016 6 CSE373: Data Structu.res &
Algorithms

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
O(n?) O(n log n) Q(n log n) O(n) sets
Insertion sort Heap sort Bucket sort
Selection sort Merge sort Radix sort

Quick sort (avg)

Visualization

Insertion Sort

ldea: At step k, put the kt" element in the correct position among
the first k elements

Alternate way of saying this:
— Sort first two elements
— Now insert 3 element in order
— Now insert 4th element in order

“Loop invariant”: when loop index is i, first i elements are sorted

Time?
Best-case Worst-case “Average” case

Visualization

Insertion Sort

« Idea: At step k, put the k" element in the correct position among
the first k elements

e Alternate way of saying this:
— Sort first two elements
— Now insert 3 element in order
— Now insert 4th element in order

 “Loop invariant”: when loop index is i, first 1 elements are sorted

e Time?
Best-case O(n) Worst-case O(n?) “Average” case O(n?)
start sorted start reverse sorted (see text)
Summer 2016 9 CSE373: Data Structures &

Algorithms

Visualization

Selection sort

Idea: At step k, find the smallest element among the not-yet-
sorted elements and put it at position k

Alternate way of saying this:
— Find smallest element, put it 1t
— Find next smallest element, put it 2nd
— Find next smallest element, put it 37

“Loop invariant”: when loop index is 1, first 1 elements are the i
smallest elements in sorted order

Time?
Best-case Worst-case “Average” case

Selection sort

* |dea: At step k, find the smallest element among the not-yet-
sorted elements and put it at position k

e Alternate way of saying this:
— Find smallest element, put it 1t
— Find next smallest element, put it 2nd
— Find next smallest element, put it 37

* “Loop invariant”: when loop index is i, first i elements are the 1
smallest elements in sorted order

e Time?
Best-case O(n’?) Worst-case O(n?) “Average” case O(n?)
Always T(1) =1 and T(n) = n + T(n-1)

CSE373: Data Structures &

Summer 2016 11 Algorithms

Insertion Sort vs. Selection Sort

Different algorithms
Solve the same problem

Have the same worst-case and average-case asymptotic
complexity

— Insertion-sort has better best-case complexity; preferable when
input is “mostly sorted”

Other algorithms are more efficient for non-small arrays
that are not already almost sorted

— Insertion sort may do well on small arrays

Bubble Sort

* Not intuitive — It’s unlikely that you’d come up
with bubble sort

* |t doesn’t have good asymptotic complexity:
O(n?)

* |t's not particularly efficient with respect to
common factors

Basically, almost everything it is good at some
other algorithm is at least as good at

Bubble Sort

e Visualization

6 5 3 1 8 7 2 4

e https://www.youtube.com/watch?

v=k4RRi ntQc8

Summer 2016 CSE373: Data Structures & Algorithms

14

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
O(n?) O(n log n) Q(n log n) O(n) sets
Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting

Quick sort (avg)

Heap sort

e Sorting with a heap is easy:
— insert eacharr[i], or better yet use

buildHeap
— for (i=0; i < arr.length; i++)
arr[i] = deleteMin();

* Worst-case running time: O(n 1og n)

 We have the array-to-sort and the heap
— So this is not an in-place sort
— There’s a trick to make it in-place...

But this reverse sorts —

In-place heap sort sort howwould you fixthatz

— Treat the initial array as a heap (via buildHeap)

— When you delete the ith element, putitatarr[n-i]
* That array location isn’t needed for the heap anymore!

4 |7 | 51 918 6|10 3] 2]1

\ J\ J
[[

heap part sorted part

> s {716 9|s8]w]a]|3] 2]1
\] \ J

arr[n-i]= | |

deleteMin () heap part sorted part

“AVL sort”

e We can also use a balanced tree to:
— insert each element: total time O(n 1og n)

— Repeatedly deleteMin: total time O(n 1og n)
* Better: in-order traversal O(n), but still O(n Log n) overall

e But this cannot be done in-place and has worse
constant factors than heap sort

— both are O(n 1og n) in worst, best, and average case
— neither parallelizes well
— heap sort is better

“Hash sort”???

 Don’t even think about trying to sort with a
hash table!

* Finding min item in a hashtable is O(n), so this
would be a slower, more complicated
selection sort

Divide and conquer
Very important technique in algorithm design
1. Divide problem into smaller parts

2. Independently solve the simpler parts

— Think recursion
— Or potential parallelism

3. Combine solution of parts to produce overall
solution

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element
Divide elements into less-than pivot
and greater-than pivot
Sort the two divisions (recursively on each)
Answer is sorted-less-than then pivot then
sorted-greater-than

Mergesort

 To sort array from position 1o to position hi:
— If range is 1 element long, it is already sorted! (Base case)

— Else:
e Sort from loto (hi+lo) /2
e Sort from (hi+lo) /2 tohi
* Merge the two halves together

* Merging takes two sorted parts and sorts everything
— O(n) but requires auxiliary space...

CSE373: Data Structures &

Summer 2016 22 Algorithms

Example, Focus on Merging

Start
with:
After recursion:

(not magic ©)

Merge:

Use 3 “fingers”

and 1 more array /

(After merge,
copy back to
original array)

CSE373: Data Structures &

Summer 2016 23 Algorithms

Example, focus on merging

Start
with:
After recursion:

(not magic ©)

Merge:

Use 3 “fingers” 1

and 1 more array /

(After merge,
copy back to
original array)

CSE373: Data Structures &

Summer 2016 24 Algorithms

Example, focus on merging

Start
with:
After recursion:

(not magic ©)

Merge:
Use 3 “fingers” 1 2
and 1 more array /

(After merge,
copy back to
original array)

CSE373: Data Structures &

Summer 2016 25 Algorithms

Example, focus on merging

Start
with:
After recursion:

(not magic ©)

Merge:
Use 3 “fingers” 1 213
and 1 more array /

(After merge,
copy back to
original array)

CSE373: Data Structures &

Summer 2016 26 Algorithms

Example, focus on merging

Start
with:
After recursion:

(not magic ©)

Merge:
Use 3 “fingers” 1 2134
and 1 more array /

(After merge,
copy back to
original array)

CSE373: Data Structures &

Summer 2016 27 Algorithms

Example, focus on merging

Start
with:
After recursion:

(not magic ©)

Merge:
Use 3 “fingers” 1 213|415
and 1 more array /

(After merge,
copy back to
original array)

CSE373: Data Structures &

Summer 2016 28 Algorithms

Example, focus on merging

Start
with:
After recursion:

(not magic ©)

Merge:
Use 3 “fingers” 1 21314156
and 1 more array /

(After merge,
copy back to
original array)

CSE373: Data Structures &

Summer 2016 29 Algorithms

Example, focus on merging

Start
with:
After recursion:

(not magic ©)

Merge:
Use 3 “fingers” 1 213141568
and 1 more array /

(After merge,
copy back to
original array)

CSE373: Data Structures &

Summer 2016 30 Algorithms

Example, focus on merging

Start
with:
After recursion:

(not magic ©)

Merge:
Use 3 “fingers” 1 21314156189

and 1 more array /

(After merge,
copy back to
original array)

CSE373: Data Structures &

Summer 2016 31 Algorithms

Example, focus on merging

Start
with:
After recursion:

(not magic ©)

Merge:
Use 3 “fingers” 1 21314156189

and 1 more array /

(After merge,
copy back to 1 2131456 8|9
original array)

CSE373: Data Structures &

Summer 2016 32 Algorithms

Example, Showing Recursion

812191453 |1]6

Divide «— T
82 9 4 5 3 1 6
Divide / \ / .
Divid 8 2 9 4 53 1.6
ivide N / N PN 2N
1 Element 8 2 4 5 3 1 6
\/ \/ N W4
Merge "¢ 35 16
Mg 2\48‘9/ v

Merge \/

1 2345 6389

CSE373: Data Structures &

Summer 2016 33 Algorithms

Some details: saving a little time

 What if the final steps of our merge looked like this:

9 Main array

1 2 3 4 5 6 Auxiliary array

/

* Wasteful to copy to the auxiliary array just to copy
back...

CSE373: Data Structures &

Summer 2016 34 Algorithms

Some details: saving a little time
e |f left-side finishes first, just stop the merge and copy

back:
copy I A -

A

* If right-side finishes first, copy dregs into %irgtht then
copy back

& —_—
S \ e

e

second I

CSE373: Data Structures &

mmmmm 2016 35 Algorithms

Some details: Saving Space and
Copying

Simplest / Worst:
Use a new auxiliary array of size (hi-1o) for every merge

Better:
Use a new auxiliary array of size n for every merging stage

Better:
Reuse same auxiliary array of size n for every merging stage

Best (but a little tricky):

Don’t copy back —at 2"9, 4th, 61, ... merging stages, use the
original array as the auxiliary array and vice-versa

— Need one copy at end if number of stages is odd

Swapping Original / Auxiliary Array
(“best”)

e First recurse down to lists of size 1
e As we return from the recursion, swap between arrays

!! !!!! !!! !! !! !! !! !.I(!.I(!.I(!! !! !! !! !! !! Merge by 1

VYo VS v S v v Y Mergeby2

Merge by 4

Merge by 8

Merge by 16

l Copy if Needed

(Arguably easier to code up without recursion at all)

Summer 2016 37 CSE373: Data Structures &

Algorithms

Linked lists and big data

We defined sorting over an array, but sometimes you
want to sort linked lists

One approach:
— Convert to array: O(n)
— Sort: O(n 1log n)
— Convert back to list: O(n)

Or: merge sort works very nicely on linked lists directly
— Heapsort and quicksort do not
— Insertion sort and selection sort do but they’re slower

Merge sort is also the sort of choice for external sorting
— Linear merges minimize disk accesses
— And can leverage multiple disks to get streaming accesses

Analysis

Having defined an algorithm and argued it is correct,
we should analyze its running time and space:

To sort n elements, we:
— Return immediately if n=1

— Else do 2 subproblems of size n/2 and then an O(n)
merge

Recurrence relation:
T(1) =,
T(n) = 2T(n/2) + c,n

One of the recurrence classics...

For simplicity let constants be 1 (no effect on asymptotic
answer)

T(1)=1 So total is 2¥T(n/2%) + kn
where
T(n) = 2T(n/2) + n n/2x=1,i.e., logn=k
=2(2T(n/4) + n/2) + n That is, 2°e"T(1) + n log n
=4T(n/4) + 2n =n+nlogn
=4(2T(n/8) + n/4) + 2n = O(n log n)
= 8T(n/8) + 3n

= 2¥T(n/2%) + kn

Or more intuitively...

This recurrence is common you just “know” it’'s O(n 1Log n)

Merge sort is relatively easy to intuit (best, worst, and average):

The recursion “tree” will have 1og n height
At each level we do a total amount of merging equal to n

8|2
Divide — i
o 82 9 4 5316
Divide o ey N
pary S 9 4 53 16
ivide
Y\ & PR &€ 55
1 element 8 2 9 4 s 3 1 6
\\\// \\\// \\\// \\\//
Merge)8 49 3 5 16
Merge \/ \/
2 489 13 56
Merxge 123456809
CSE373: Data Structures &

4l Algorithms

Summer 2016

Quicksort

* Also uses divide-and-conquer
— Recursively chop into two pieces

— Instead of doing all the work as we merge together,
we will do all the work as we recursively split into halves

— Unlike merge sort, does not need auxiliary space
* O(n logn)on average ©, but O(n?) worst-case ®

* Faster than merge sort in practice?

— Often believed so

— Does fewer copies and more comparisons, so it depends
on the relative cost of these two operations!

Quicksort Overview

1. Pick a pivot element

2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort Aand C
4. The answer is, “as simple as A, B, C”

(Alas, there are some details lurking in this algorithm)

Think in Terms of Sets

select pivot value

31 57
13 43 4/75
92 0
2

S1 SH partition S
i

Quicksort(S,) and
S1 Sy Quicksort(S,)

S 0 1326 31 43 57 65 75 81 9 Presto! S is sorted

[Weiss]

CSE373: Data Structures &

Summer 2016 44 Algorithms

Example, Showing Recursion

8121914 |53 |1]6

Divide «— 5 —
Divid 24 3 1 B 8 9 6
1vide 4 — -~
.. 2 1 4 6 8 9
Divide
\
1 Element 12
Conquer '[’/
Conquer \ ' v
1 1 2 3 4 6 8 9
Con uer\’ ' —
q 1 23456809
Summer 2016 45 CSE373: Data Structures &

Algorithms

Details

Have not yet explained:

* How to pick the pivot element
— Any choice is correct: data will end up sorted

— But as analysis will show, want the two partitions to
be about equal in size

* How to implement partitioning
— In linear time
— In place

Pivots

e Best pivot? gl2]9]a[s5]3]1]6
— Median “ o
— Halve each time 243 1

8121914[5|3[1]6

 Worst pivot? —
— Greatest/least element - 8294536

— Problem of sizen -1
— 0(n?)

Potential pivot rules

While sorting arr from 1o (inclusive) to hi (exclusive)...

e Pickarr[lo] orarr[hi-1]
— Fast, but worst-case occurs with mostly sorted input

* Pick random element in the range

— Does as well as any technique, but (pseudo)random number
generation can be slow

— Still probably the most elegant approach

e Medianof 3,e.g.,,arr[lo], arr[hi-1], arr[(hi
+1lo0) /2]

— Common heuristic that tends to work well

Partitioning

* Conceptually simple, but hardest part to code up
correctly

— After picking pivot, need to partition in linear time in place

* One approach (there are slightly fancier ones):
1. Swap pivot with arr[lo]
2. Usetwo fingers i and j, starting at lo+1 and hi-1
3. while (i < j)
if (arr[j] > pivot) j--
else if (arr[i] < pivot) i++
else swap arr[i] with arr[j]
4. Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

Example

e Step one: pick pivot as median of 3

—lo=0,h1=10
0 1 2 3 4 5 6 7 8 9
8 (1 (49|03 |5|2|7/|6
e Step two: move pivot to the 1o position
0 1 2 3 4 5 6 7 8 9
6114|9103 |5[2]7]8

Often have more than

Example one swap during partition —

this is a short example

Now partitioninplace [{145 o0l3]51217]8

Move fingers P IR IR P Ry s [y

Swap

Move fingers

Move pivot

Analysis

* Best-case: Pivot is always the median
T(0)=T(1)=1
T(n)=2T(n/2) + n -- linear-time partition
Same recurrence as mergesort: O(n 1og n)

 Worst-case: Pivot is always smallest or largest element
T(0)=T(1)=1
T(n) =1T(n-1) +n
Basically same recurrence as selection sort: O(n?)

* Average-case (e.g., with random pivot)
— O(n 1og n), not responsible for proof (in text)

Cutoffs

For small n, all that recursion tends to cost more than
doing a quadratic sort

— Remember asymptotic complexity is for large n

Common engineering technique: switch algorithm
below a cutoff

— Reasonable rule of thumb: use insertion sort for n < 10

Notes:
— Could also use a cutoff for merge sort

— Cutoffs are also the norm with parallel algorithms
* Switch to sequential algorithm

— None of this affects asymptotic complexity

Cutoff skeleton

void quicksort(int[] arr, int lo, int hi) ({
if(hi - lo < CUTOFF)
insertionSort (arr,lo,hi);
else

Notice how this cuts out the vast majority of the recursive calls
— Think of the recursive calls to quicksort as a tree
— Trims out the bottom layers of the tree

CSE373: Data Structures &

Summer 2016 >4 Algorithms

Cool Resources

e http://www.sorting-algorithms.com/

e https://www.youtube.com/watch?v=t8g-
IYGHpPEA

CSE373: Data Structures &

Summer 2016 55 Algorithms

