Announcements

* HW4 due Friday

Summer 2016 CSE373: Data Structures & Algorithms

CSE373: Data Structures & Algorithms
Minimum Spanning Trees

Hunter Zahn
Summer 2016

Summer 2016 CSE373: Data Structures & Algorithms

Spanning Trees

 Asimple problem: Given a connected undirected
graph G=(V,E), find a minimal subset of edges such
that G is still connected

— A graph G2=(V,E2) such that G2 is connected and
removing any edge from E2 makes G2 disconnected

CSE373: Data Structures &

Summer 2016 3 Algorithms

1.

2.

3.

4.

Observations

Any solution to this problem is a tree

Recall a tree does not need a root; just means acyclic
For any cycle, could remove an edge and still be connected

Solution not unique unless original graph was already a tree

Problem ill-defined if original graph not connected

So |E| >=|V|-1

A tree with |V| nodes has |V|-1 edges

So every solution to the spanning tree problem has |V]-1 edges

Motivation

A spanning tree connects all the nodes with as few edges as possible

 Example: A “phone tree” so everybody gets the message and no
unnecessary calls get made

— Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and
we want a tree of least total cost

 Example: Electrical wiring for a house or clock wires on a chip

« Example: A road network if you cared about asphalt cost rather
than travel time

This is the minimum spanning tree problem
— Will do that next, after intuition from the simpler case

CSE373: Data Structures &
Algorithms

Summer 2016 5

Two Approaches

Different algorithmic approaches to the
spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search,
but any traversal will do), keeping track of
edges that form a tree

2. lterate through edges; add to output any
edge that does not create a cycle

Spanning tree via DFS

spanning tree (Graph G) {
for each node 1: i1.marked = false
for some node i: £ (1)
}
f (Node i) {
1.marked = true
for each j adjacent to 1:
1f(!'j.marked) {
add(i,J) to output
£(3J) // DFS

Correctness: DFS reaches each node. We add one edge to connect it
to the already visited nodes. Order affects result, not correctness.

Time: O(|E|)

Example

Stack 2
f(1)

Output:

CSE373: Data Structures &

Summer 2016 8 Algorithms

Example

Stack 2
(bottom)

f(1)
f(2)

Output: (1,2)

CSE373: Data Structures &
Algorithms

Example

Stack 2
(bottom)

f(1)
f(2)
f(7)

Output: (1,2), (2,7)

CSE373: Data Structures &

Summer 2016 10 Algorithms

Example

Stack 2
(bottom)

f(1)
f(2)
f(7)
f(5)

Output: (1,2), (2,7), (7,5)

CSE373: Data Structures &

mmmmm 2016 11 Algorithms

Example

Output: (1,2), (2,7), (7,5), (5,4)

CSE373: Data Structures &

ummer 2016 12 Algorithms

Example

f(3) Output: (1,2), (2,7), (7,5), (5,4),(4,3)

CSE373: Data Structures &

ummer 2016 13 Algorithms

Example

Stack 2
(bottom)

f(1)
f(2)
f(7)
f(5)
f(6)

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

CSE373: Data Structures &

ummer 2016 14 Algorithms

Example

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

CSE373: Data Structures &

Summer 2016 15 Algorithms

Second Approach

Iterate through edges; output any edge that does not
create a cycle

Correctness (hand-wavy):
— Goal is to build an acyclic connected graph

— When we add an edge, it adds a vertex to the tree
* Else it would have created a cycle

— The graph is connected, so we reach all vertices

Efficiency:
— Depends on how quickly you can detect cycles
— Reconsider after the example

Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5),
(4,7) ’

CSE373: Data Structures &

Summer 2016 17 Algorithms

Example

Edges in some arbitrary order:

, (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3),
(4,5), (4,7) 2

1

Output: (1,2)

CSE373: Data Structures &

Summer 2016 18 Algorithms

Example

Edges in some arbitrary order:

, , (5,6), (5,7),(1,5), (1,6), (2,7), (2,3),
(4,5), (4,7) 2

1

CSE373: Data Structures &

Summer 2016 19 Algorithms

Example
Edges in some arbitrary order:

: : , (5,7),(1,5), (1,6), (2,7), (2,3),
(4,5), (4,7) ?

1

CSE373: Data Structures &

Summer 2016 20 Algorithms

Example
Edges in some arbitrary order:

, o 6(1,5),(1,6),(2,7),(2,3),
(4,5), (4,7) :

1

CSE373: Data Structures &

Summer 2016 21 Algorithms

Example
Edges in some arbitrary order:

y o, (146),(2,7),(2,3),
(4,5), (47) :

5

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

CSE373: Data Structures &

Summer 2016 22 Algorithms

Example
Edges in some arbitrary order:

y s, (127),(2,3),
(4,5), (4,7) :

1

5
Output: (1,2), (3,4), (5,6), (5,7), (1,5)

CSE373: Data Structures &

Summer 2016 23 Algorithms

Example

Edges in some arbitrary order:

4 4 4 4 4 4 /) (213)1
(4,5), (4,7) ’

1

5
Output: (1,2), (3,4), (5,6), (5,7), (1,5)

CSE373: Data Structures &

Summer 2016 24 Algorithms

Example
Edges in some arbitrary order:

4 4 4 4 4 4

(4,5’), (4,7’) ?

1

Can stop once we
5 have |V|-1 edges

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

CSE373: Data Structures &

Summer 2016 25 Algorithms

Cycle Detection

To decide if an edge could form a cycle is O(|V])

because we may need to traverse all edges already in
the output

So overall algorithm would be O(|V| |E])

But there is a faster way we know: use union-find!
— Initially, each item is in its own 1-element set

— Union sets when we add an edge that connects them
— Stop when we have one set

Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-
tree algorithm to detect cycles:

Invariant: u and v are connected in output-so-far
iff
u and v in the same set

* |nitially, each node is in its own set

* When processing edge (u,v):
— If £ind (u) equals £ind (v), then do not add the edge
— Else add the edge and union (£find (u) , £find (v))
— O(|E|) operations that are almost O(1) amortized

Summary So Far

The spanning-tree problem
— Add nodes to partial tree approach is O(|E|)
— Add acyclic edges approach is almost O(|E|)

* Using union-find “as a black box”

But really want to solve the minimum-spanning-tree
problem

— Given a weighted undirected graph, give a spanning tree
of minimum weight

— Same two approaches will work with minor modifications
— Both will be O(|E|1og|V]|)

CSE373: Data Structures &

Summer 2016 28 Algorithms

Getting to the Point

Algorithm #1
Shortest-path is to Dijkstra’s Algorithm
as
Minimum Spanning Tree is to Prim’s Algorithm

(Both based on expanding cloud of known vertices, basically
using a priority queue instead of a DFS stack)

Algorithm #2
Kruskal’s Algorithm for Minimum Spanning Tree
IS
Exactly our 2" approach to spanning tree
but process edges in cost order

CSE373: Data Structures &

Summer 2016 29 Algorithms

Prim’s Algorithm ldea

ldea: Grow a tree by adding an edge from the
“known” vertices to the “unknown” vertices.
Pick the edge with the smallest weight that
connects “known” to “unknown.”

Recall Dijkstra “picked edge with closest known
distance to source”

— That is not what we want here
— Otherwise identical (!)

The Algorithm

1. Foreachnodew,set v.cost = » and v.known =
false

2. Choose any node v
a) Mark v as known

b) For each edge (v,u) with weight w, set u.cost=w and
u.prev=v

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Markvas knownandadd (v, v.prev) tooutput
c) Foreachedge (v,u) with weight w,
if(w < u.cost) {
u.cost = w;
u.prev = v;

}

Example

G vertex | known? cost prev

g A 27

??

??

??

??

??

@QMM|O|IO |

??

CSE373: Data Structures &

Summer 2016 32 Algorithms

Summer 2016

P

Example

vertex | known? cost prev
A Y 0
B 2 A
C 2 A
D 1 A
E ??
F ??
G ??

33

CSE373: Data Structures &
Algorithms

Example

vertex | known? cost prev

A Y 0

B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 5 D

CSE373: Data Structures &

Summer 2016 34 Algorithms

Example

vertex | known? cost prev

A Y 0

B 2 A
C Y 1 D
D Y 1 A
E 1 D
F 2 C
G 5 D

CSE373: Data Structures &

Summer 2016 35 Algorithms

Summer 2016

Example

vertex | known? cost prev

A Y 0

B 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

36

CSE373: Data Structures &

Algorithms

Summer 2016

Example

vertex | known? cost prev

A Y 0

B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

37

CSE373: Data Structures &

Algorithms

Summer 2016

Example

vertex | known? cost prev

A Y 0

B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G 3 E

38

CSE373: Data Structures &

Algorithms

Summer 2016

Example

vertex | known? cost prev

A Y 0

B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G Y 3 E

39

CSE373: Data Structures &

Algorithms

Analysis

* Correctness ??
— A bit tricky
— Intuitively similar to Dijkstra

* Run-time
— Same as Dijkstra
— O(]E| 1og|V]|) using a priority queue

» Costs/priorities are just edge-costs, not path-costs

Kruskal’s Algorithm

ldea: Grow a forest out of edges that do not grow a cycle,
just like for the spanning tree problem.

— But now consider the edges in order by weight

So:

— Sort edges: O(|E|1og |E|) (next course topic)

— lterate through edges using union-find for cycle detection
almost O(|E|)

Somewhat better:
— Floyd’s algorithm to build min-heap with edges O(|E|)

— lterate through edges using union-find for cycle detection and
deleteMin to get next edge O(|E| Log|E|)

— Not better worst-case asymptotically, but often stop long
before considering all edges

CSE373: Data Structures &

Summer 2016 41 Algorithms

Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set

3. While output size < |V]-1
— Consider next smallest edge (u,v)
— if £find (u,v) indicates u and v are in different sets

. output (u,v)
* union(find(u) ,find(v))

Recall invariant:

u and v in same set if and only if connected in
output-so-far

Example

Edges in sorted order:

: (A,D), (C,D), (B,E), (D,E)
(A,B), (C,F), (A,C)
(E,G)
(D,G), (B,D)
(D,F)

10: (F,G)

1:
2:
3:
5:
6:

Output:

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1 , (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)

3: (E,G)
5: (

6: (

D,G), (B,D)
D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:

, , (B,E), (D,E)
: (A,B), (C,F), (A,C)

: (E,QG)

: (D,G), (B,D)

: (D,F)

10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

CSE373: Data Structures &

Summer 2016 45 Algorithms

Example

Edges in sorted order:
1: , , , (D,E)
2: (A,B), (C,F), (A,C)

3: (E,G)

5

6

: (D,G), (B,D)
: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

CSE373: Data Structures &

Summer 2016 46 Algorithms

Example

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Summer 2016

47

Edges in sorted order:

1: , , ,
2: (A,B), (C,F), (A,C)
3: (E,G)

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

CSE373: Data Structures &

Algorithms

Example

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Summer 2016

48

Edges in sorted order:

, (C,F), (A,C)
: (E,QG)

: (D,G), (B,D)

: (D,F)

10: (F,G)

CSE373: Data Structures &

Algorithms

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Summer 2016

Example

49

Edges in sorted order:

’

: , (A,C)

: (D,G), (B,D)
: (D,F)
10: (F,G)

1
2:
3: (E,G)
5
6

CSE373: Data Structures &

Algorithms

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Summer 2016

Example

50

Edges in sorted order:

’))

’

: (D,G), (B,D)
: (D,F)
10: (F,G)

1
2: ,
3: (E,QG)
5
6

CSE373: Data Structures &

Algorithms

Example

Edges in sorted order:

1: , , ,
2: , ,

3:

5: (D,G), (B,D)

6: (D,F)

10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

Summer 2016

51

CSE373: Data Structures &

Algorithms

Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it T,.

Suppose T, is not minimum:
Pick another spanning tree T_._ with lower cost than T,
Pick the smallest edge e, =(u,v) in T thatisnotinT_,

T, already hasapathpinT_._fromutov
= Adding e, to T, . will createacycleinT, .

Pick an edge e, in p that Kruskal’s algorithm considered after
adding e, (must exist: u and v unconnected when e,
considered)
= cost(e,) = cost(e,)
=> can replace e, with e, in T_. without increasing cost!

Keep doing this until T . is identical to T,
= T, must also be minimal — contradiction!

Summer 2016 CSE373: Data Structures & Algorithms

MST Application: Clustering

* Given a collection of points in an r-
dimensional space, and an integer K, divide
the points into K sets that are closest together

Summer 2016 CSE373: Data Structures & Algorithms 53

Distance clustering

* Divide the data set into K subsets to maximize
the distance between any pair of sets

—dist (S;, S,) = min {dist(x, y) | xinS;, yinS,}

Summer 2016 CSE373: Data Structures & Algorithms 54

mmmmm

Divide into 2 clusters

55

mmmmm

Divide into 3 clusters

56

mmmmm

Divide into 4 clusters

57

Distance Clustering Algorithm

Let C = {{V'I}’ {VZ}" - {Vn}}’ T= { }
while |C| > K

Lete = (u, v) with u in C;and v in G, be the
minimum cost edge joining distinct sets in C

Replace C; and C; by C, U C,

Summer 2016 CSE373: Data Structures & Algorithms

58

Summer 2016

K-clustering

CSE373: Data Structures & Algorithms

59

