Announcements

• HW4 due Friday
CSE373: Data Structures & Algorithms
Minimum Spanning Trees

Hunter Zahn
Summer 2016
Spanning Trees

• A simple problem: Given a connected undirected graph \(G = (V, E) \), find a minimal subset of edges such that \(G \) is still connected

 – A graph \(G_2 = (V, E_2) \) such that \(G_2 \) is connected and removing any edge from \(E_2 \) makes \(G_2 \) disconnected
Observations

1. Any solution to this problem is a tree
 – Recall a tree does not need a root; just means acyclic
 – For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree

3. Problem ill-defined if original graph not connected
 – So $|E| \geq |V| - 1$

4. A tree with $|V|$ nodes has $|V| - 1$ edges
 – So every solution to the spanning tree problem has $|V| - 1$ edges
A spanning tree connects all the nodes with as few edges as possible

• Example: A “phone tree” so everybody gets the message and no unnecessary calls get made
 – Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost

• Example: Electrical wiring for a house or clock wires on a chip
• Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem
 – Will do that next, after intuition from the simpler case
Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not create a cycle
Spanning tree via DFS

spanning_tree(Graph G) {
 for each node i: i.marked = false
 for some node i: f(i)
}

f(Node i) {
 i.marked = true
 for each j adjacent to i:
 if(!j.marked) {
 add(i,j) to output
 f(j) // DFS
 }
}

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: $O(|E|)$
Example

Stack

\[f(1) \]

Output:
Example

Stack (bottom)

f(1)

f(2)

Output: (1,2)
Example

Stack
 (bottom)

f(1)

f(2)

f(7)

Output: (1,2), (2,7)
Example

Stack (bottom)

Output: (1,2), (2,7), (7,5)
Example

Stack (bottom)

Output: (1,2), (2,7), (7,5), (5,4)
Example

Stack
 (bottom)
 f(1)
 f(2)
 f(7)
 f(5)
 f(4)
 f(3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3)
Example

Stack (bottom)

f(1) f(2) f(7) f(5) f(4) f(6) f(3)

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)
Example

Stack (bottom)

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)
Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):

- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree
 - Else it would have created a cycle
- The graph is connected, so we reach all vertices

Efficiency:

- Depends on how quickly you can detect cycles
- Reconsider after the example
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output:
Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2)
Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4)
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6),
Example

Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7)
Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
Example

Edges in some arbitrary order:
(1, 2), (3, 4), (5, 6), (5, 7), (1, 5), (1, 6), (2, 7), (2, 3), (4, 5), (4, 7)

Output: (1, 2), (3, 4), (5, 6), (5, 7), (1, 5)
Example

Edges in some arbitrary order:

\[(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)\]

Output: \((1,2), (3,4), (5,6), (5,7), (1,5)\)
Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we have |V|-1 edges
Cycle Detection

• To decide if an edge could form a cycle is $O(|V|)$ because we may need to traverse all edges already in the output

• So overall algorithm would be $O(|V||E|)$

• But there is a faster way we know: use union-find!
 – Initially, each item is in its own 1-element set
 – Union sets when we add an edge that connects them
 – Stop when we have one set
Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: \(u \) and \(v \) are connected in output-so-far if and only if \(u \) and \(v \) in the same set

- Initially, each node is in its own set
- When processing edge \((u,v)\):
 - If \(\text{find}(u) \) equals \(\text{find}(v) \), then do not add the edge
 - Else add the edge and \(\text{union}(\text{find}(u), \text{find}(v)) \)
 - \(O(|E|) \) operations that are almost \(O(1) \) amortized
Summary So Far

The spanning-tree problem

- Add nodes to partial tree approach is $O(|E|)$
- Add acyclic edges approach is almost $O(|E|)$
 - Using union-find “as a black box”

But really want to solve the minimum-spanning-tree problem

- Given a weighted undirected graph, give a spanning tree of minimum weight
- Same two approaches will work with minor modifications
- Both will be $O(|E| \log |V|)$
Getting to the Point

Algorithm #1

Shortest-path is to Dijkstra’s Algorithm as
Minimum Spanning Tree is to Prim’s Algorithm
(Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack)

Algorithm #2

Kruskal’s Algorithm for Minimum Spanning Tree is
Exactly our 2nd approach to spanning tree but process edges in cost order
Prim’s Algorithm Idea

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. *Pick the edge with the smallest weight that connects "known" to "unknown."

Recall Dijkstra “picked edge with closest known distance to source”
- That is not what we want here
- Otherwise identical (!)
The Algorithm

1. For each node v, set $v\.cost = \infty$ and $v\.known = false$
2. Choose any node v
 a) Mark v as known
 b) For each edge (v,u) with weight w, set $u\.cost = w$ and $u\.prev = v$
3. While there are unknown nodes in the graph
 a) Select the unknown node v with lowest cost
 b) Mark v as known and add $(v, v\.prev)$ to output
 c) For each edge (v,u) with weight w,

 if($w < u\.cost$) {
 $u\.cost = w$
 $u\.prev = v$
 }
Example

A
B
C
D
E
F
G

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

vertex known? cost prev
A ??
B ??
C ??
D ??
E ??
F ??
G ??
Example

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>5</td>
<td>D</td>
</tr>
</tbody>
</table>
Example

vertex	known?	cost	prev
A | Y | 0 |
B | | 2 | A
C | Y | 1 | D
D | Y | 1 | A
E | | 1 | D
F | | 2 | C
G | | 5 | D
Example

vertex	known?	cost	prev
A | Y | 0 | |
B | | 1 | E
C | Y | 1 | D
D | Y | 1 | A
E | Y | 1 | D
F | | 2 | C
G | | 3 | E
Example

![Graph with labeled vertices and edges]

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
Example

A 0 2 1 1 2 2 0
B 0 2 1 1 5 1 1
C 0 2 6 1 5 1 3
D 0 2 6 1 5 1 3
E 0 2 6 1 5 1 3
F 0 2 6 1 5 1 3
G 0 2 6 1 5 1 3

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
Example

- **Graph Representation**
 - Vertices: A, B, C, D, E, F, G
 - Edges and Weights:
 - A-B: 2
 - A-C: 2
 - B-D: 1
 - B-E: 1
 - C-D: 6
 - C-G: 2
 - D-E: 1
 - D-G: 5
 - E-G: 3
 - F-G: 10

- **Known Vertex Table**
 - | Vertex | Known? | Cost | Prev |
 - |-------|--------|------|------|
 - | A | Y | 0 | |
 - | B | Y | 1 | E |
 - | C | Y | 1 | D |
 - | D | Y | 1 | A |
 - | E | Y | 1 | D |
 - | F | Y | 2 | C |
 - | G | Y | 3 | E |
Analysis

• Correctness ??
 – A bit tricky
 – Intuitively similar to Dijkstra

• Run-time
 – Same as Dijkstra
 – $O(|E| \log |V|)$ using a priority queue
 • Costs/priorities are just edge-costs, not path-costs
Kruskal’s Algorithm

Idea: Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.
 – But now consider the edges in order by weight

So:
 – Sort edges: $O(|E| \log |E|)$ (next course topic)
 – Iterate through edges using union-find for cycle detection almost $O(|E|)$

Somewhat better:
 – Floyd’s algorithm to build min-heap with edges $O(|E|)$
 – Iterate through edges using union-find for cycle detection and \texttt{deleteMin} to get next edge $O(|E| \log |E|)$
 – Not better \textit{worst-case} asymptotically, but often stop long before considering all edges
Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size < |V| - 1
 - Consider next smallest edge \((u, v)\)
 - if \(\text{find}(u, v)\) indicates \(u\) and \(v\) are in different sets
 • output \((u, v)\)
 • \(\text{union}(\text{find}(u), \text{find}(v))\)

Recall invariant:
\(u\) and \(v\) in same set if and only if connected in output-so-far
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest
Edges in sorted order:
1: \((A,D), (C,D), (B,E), (D,E)\)
2: \((A,B), (C,F), (A,C)\)
3: \((E,G)\)
5: \((D,G), (B,D)\)
6: \((D,F)\)
10: \((F,G)\)

Output: \((A,D)\)

Note: At each step, the union/find sets are the trees in the forest
Edges in sorted order:
1: \((A,D), (C,D), (B,E), (D,E)\)
2: \((A,B), (C,F), (A,C)\)
3: \((E,G)\)
5: \((D,G), (B,D)\)
6: \((D,F)\)
10: \((F,G)\)

Output: \((A,D), (C,D)\)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest
Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest
Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it T_K.

Suppose T_K is not minimum:

- Pick another spanning tree T_{min} with lower cost than T_K.
- Pick the smallest edge $e_1 = (u, v)$ in T_K that is not in T_{min}.
- T_{min} already has a path p in T_{min} from u to v.
 - Adding e_1 to T_{min} will create a cycle in T_{min}.
- Pick an edge e_2 in p that Kruskal’s algorithm considered after adding e_1 (must exist: u and v unconnected when e_1 considered).
 - \Rightarrow cost(e_2) \geq cost(e_1).
 - \Rightarrow can replace e_2 with e_1 in T_{min} without increasing cost!
- Keep doing this until T_{min} is identical to T_K.
 - $\Rightarrow T_K$ must also be minimal – contradiction!
MST Application: Clustering

• Given a collection of points in an r-dimensional space, and an integer K, divide the points into K sets that are closest together
Distance clustering

• Divide the data set into K subsets to maximize the distance between any pair of sets
 − dist \((S_1, S_2)\) = \(\min \{\text{dist}(x, y) \mid x \in S_1, y \in S_2\}\)
Divide into 2 clusters
Divide into 3 clusters
Divide into 4 clusters
Distance Clustering Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}$; $T = \{\}$

while $|C| > K$

 Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

 Replace C_i and C_j by $C_i \cup C_j$
K-clustering