Announcements

Revised office hours for Dan this week
— See email

Review session tomorrow, 2-3pm
Final review session poll out

Today’s lecture:
— Lots of material
— Important to review on your own — very mechanical.

CSE373: Data Structures & Algorithms
Topological Sort / Graph Traversals / Dijkstra’s

Hunter Zahn
Summer 2016

Summer 2016 CSE373: Data Structures & Algorithms

Disclaimer: This may be wrong. Don’t
base your course schedules on this

Topological Sort | v vee.

Problem: Given a DAG G=(V,E), output all vertices in an order
such that no vertex appears before another vertex that has an
edge to it

Example input: CSE 374 XYZ

One example output:

126, 142, 143, 374, 373,417, 410, 413, XYZ, 415

CSE373: Data Structures &

Summer 2016 3 Algorithms

Questions and comments

Why do we perform topological sorts only on DAGs?
— Because a cycle means there is no correct answer

Is there always a unique answer?
— No, there can be 1 or more answers; depends on the graph
— Graph with 5 topological orders:

Do some DAGs have exactly 1 answer?
— Yes, including all lists

Terminology: A DAG represents a partial order and a topological
sort produces a total order that is consistent with it

Uses

Figuring out how to graduate

Computing an order in which to recompute cells in a
spreadsheet

Determining an order to compile files using a Makefile

In general, taking a dependency graph and finding an
order of execution

A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
— Think “write in a field in the vertex”

— Could also do this via a data structure (e.g., array)
on the side

2. While there are vertices not yet output:

a) Choose a vertex v with labeled with in-degree of O
b) Output v and conceptually remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u)
in E), decrement the in-degree of u

CSE373: Data Structures &

Summer 2016 6 Algorithms

Example

CSE 374 XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: O o 2 1 1 1 1 1 1 3

Output

CSE373: Data Structures &

Summer 2016 U Algorithms

Example

CSE 374 XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: 0 O /{ 1 1 1 1 1 1 3

1

Output

CSE373: Data Structures &

Summer 2016 8 Algorithms

Example

CSE 374 XYZ

Gse |
SIS TR 126

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: 0 O /{ 1 1 1 1 1 1 3

//

0

Summer 2016 9

Output

CSE373: Data Structures &
Algorithms

Example

CSE 374 XYZ

G
G o G o

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x

X
In-degree: 0 O}/}/}/11113
/oo

0

Summer 2016 10

Output

CSE373: Data Structures &
Algorithms

Example Output

CSE 374 XYZ :
o alex) =

142

Cse413
ST 125 Cse413 143
sz 41)

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X X

In-degree: 0 oﬁ / y 11 1 1 ;/
/ 0 0 2
0

Example

CSE 374 XYZ

G
G o G o

QIATH 125 Cst413 143
CsE41) 374

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x

n-degree: 0 o?oy;/{/of/o/oz/

Summer 2016 12

Output

CSE373: Data Structures &
Algorithms

Example

CSE 374 XYZ .
126
g e 9

T oo 13
@ 374
373

Node: 126142 143 374 373 410 413 415 417 XYZ

Removed? x X

in-degree: 0 o ;?/ O/ g O/ O/ Oyoy 27

0

Summer 2016 13

Output

CSE373: Data Structures &
Algorithms

Example Output:

CSE 374 XYZ 126

Cst410
SIS IR
143
GIATH 126 Csta13 374
@@; 373

417

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x Xx X X X

n-degree: 0 0 2 1 vV 1 1 A 1
/1/ O 0O O 0 o0 O /{

0 1

Summer 2016 14

CSE373: Data Structures &
Algorithms

Example Output:
126

CSE 374
CSE 410 142
SN 7
=

374
MATH 126 373
=
410
Node: 126142 143 374 373 410 413 415 417 XYZ

Removed? x

mmmooxf/////f

mmmmmmmmmm

(@)
wn
m
w
~
w
Q)
e
Q
wm
—~
-
C
(@]
-
C
-
0]
wn
Q0

Example Output:
126

CSE 374
@ 142
G- @&/
o

374
417
e
413
Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x X X

in-degree: 0 ///// y/ //157

mmmmmmmmmm

Exam ple Output:

126
CSE 374 XYZ 147
e @ilan 2]
e
373
QIATH 126 CsE 413 417
410
=
XYZ
Node: 126 142 143 374 373 410 413 415 417 XYZ

x

Removed? x X X X

i degree: 0 o////f Yoaaday

o 0 00 O O

\l\)\

CSE373: Data Structures &

Summer 2016 17 0 Algorithms

Notice

* Needed a vertex with in-degree 0 to start
— Will always have at least 1 because no cycles

* Ties among vertices with in-degrees of 0 can be broken
arbitrarily

— Can be more than one correct answer, by definition,
depending on the graph

Running time?

labelEachVertexWithItsInDegree () ;
for(=0; ctr < numVertices; ctr++) {
= findNewVertexOfDegreeZero() ;
put v next in output
for each adjacent to v
w.indegree--;

Running time?

labelEachVertexWithItsInDegree () ;
for(=0; ctr < numVertices; ctr++) {
= findNewVertexOfDegreeZero() ;
put v next in output
for each adjacent to v

w.indegree--;

 What is the worst-case running time?
— Initialization O(|V|+|E|) (assuming adjacency list)
— Outer loop: runs |V| times
— findNewVertex: O(|V])

— Sum of all decrements O(|E|) (assuming adjacency list) (each edge
is removed once)

— So total is O(|V|?) — not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

— Keep the “pending” zero-degree nodes in a list, stack, queue, bag,
table, or something

— Order we process them affects output but not correctness or
efficiency provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty

a) v=dequeue()

b) Outputvand remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement
the in-degree of u, if new degree is 0, enqueue it

Summer 2016 3 CSE373: Data Structu.res &
Algorithms

Running time?

labelAllAndEnqueueZeros () ;
while queue not empty ({
= dequeue() ;
put v next in output
for each adjacent to v {
w.lindegree--;
1f (w.indegree==0)
enqueue (V) ;

Running time?

labelAllAndEnqueueZeros () ;
while queue not empty ({
= dequeue() ;
put v next in output
for each adjacent to v {
w.lindegree--;
1f (w.indegree==0)
enqueue (V) ;

}

 What is the worst-case running time?
— Initialization: O(|V|+]|E|) (assuming adjacenty list)
— Sum of all enqueues and dequeues: O(|V])
— Sum of all decrements: O(|E|) (assuming adjacency list)
— So total is O(|E| + |V|) — much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node v,
find all nodes reachable from v (i.e., there exists a path
from v)

— Possibly “do something” for each node
— Examples: print to output, set a field, etc.

* Subsumed problem: Is an undirected graph connected?
* Related but different problem: Is a directed graph
strongly connected?
— Need cycles back to starting node

Basic idea:
— Keep following nodes

— But “mark” nodes after visiting them, so the traversal
terminates and processes each reachable node exactly once

Abstract Idea

void traverseGraph (Node) {

Set pending = emptySet ()
pending.add ()
mark as visited
while (pending 1s not empty) {
= pending.remove ()
for each node adjacent to next
if (u is not marked) {
mark
pending.add (u)

CSE373: Data Structures &

Summer 2016 25 Algorithms

Running Time and Options

Assuming add and remove are O(1), entire traversal is O(|E|)
— Use an adjacency list representation

The order we traverse depends entirely on add and remove
— Popular choice: a stack “depth-first graph search” -
— Popular choice: a queue “breadth-first graph search”—>

and are “big ideas” in computer science

— Depth: recursively explore one part before going back to the
other parts not yet explored

— Breadth: explore areas closer to the start node first

Cool visualization: http://visualgo.net/dfsbfs.html

Summer 2016 CSE373: Data Structures & Algorithms

26

Example: trees

 Atreeisagraph and DFS and BFS are particularly easy to “see”

DFS (Node start) {
mark and process start
for each node u adjacent to start
1f u 1is not marked
DF'S (u)

e ABDECFG,H
e Exactly what we called a “pre-order traversal” for trees

— The marking is because we support arbitrary graphs and we want to
process each node exactly once

Example: trees

 Atreeisagraph and DFS and BFS are particularly easy to “see”

DFS2 (Node start) {
initialize stack s to hold start
mark start as visited
while (s 1s not empty) {
next = s.pop() // and “process”
for each node u adjacent to next
1f(u 1is not marked)
mark u and push onto s

 ACFHG,B,ED
* Adifferent but perfectly fine traversal

Example: trees

 Atreeisagraph and DFS and BFS are particularly easy to “see”

BFS (Node start) {
initialize queue g to hold start
mark start as visited
while (g 1s not empty) {

next = g.dequeue() // and “process”

for each node u adjacent to next
1f(u 1s not marked)
mark u and enqueue onto g

}

- ABCDEFGH
e A “level-order” traversal

Comparison

* Breadth-first always finds shortest paths, i.e.,
“optimal solutions”

— Better for “what is the shortest path from x to y”

e But depth-first can use less space in finding a path

— If longest path in the graph is p and highest out-degree
is d then DFS stack never has more than d*p elements

— But a queue for BFS may hold O(|V]) nodes

* A third approach:
— Iterative deepening (IDFS):

* Try DFS but disallow recursion more than K levels deep
* |f that fails, increment K and start the entire search over

— Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

Our graph traversals can answer the reachability
question:

— “Is there a path from node x to node y?”

But what if we want to actually output the path?

— Like getting driving directions rather than just knowing it’s
possible to get there!

How to do it:

— Instead of just “marking” a node, store the previous node
along the path (when processing u causes us to add v to the
search, set v.path field to be u)

— When you reach the goal, follow path fields back to where
you started (and then reverse the answer)

— If just wanted path length, could put the integer distance at
each node instead

Example using BFS

What is a path from Seattle to Tyler
— Remember marked nodes are not re-enqueued
— Note shortest paths may not be unique

0
1 Chicago

Seattle

‘ Salt Lake City

San Francisco 5

Da | |aS CSE373: Data Structures &

Summer 2016 32 Algorithms

Summer 2016

Shortest Paths

Hunter Zahn
Summer 2016

CSE373: Data Structures & Algorithms

33

Single source shortest paths

* Done: BFS to find the minimum path length fromvto uin
O(|E[+]V])

e Actually, can find the minimum path length from v to every node
— Stll O(|E|+]|V])
— No faster way for a “distinguished” destination in the worst-case

* Now: Weighted graphs

Given a weighted graph and node v,
find the minimum-cost path from v to every node

* As before, asymptotically no harder than for one destination
Unlike before, BFS will not work

CSE373: Data Structures &

Summer 2016 34 Algorithms

Applications

Driving directions
Cheap flight itineraries
Network routing

Critical paths in project management

Not as easy

10

100 100

100 100 ®

500

Why BFS won’t work: Shortest path may not have the fewest edges
— Annoying when this happens with costs of flights

We will assume there are no negative weights
* Problem is ill-defined if there are negative-cost cycles
* Today’s algorithm is wrong if edges can be negative
— There are other, slower (but not terrible) algorithms

CSE373: Data Structures &

Summer 2016 36 Algorithms

Dijkstra

e Algorithm named after its inventor Edsger
Dijkstra (1930-2002)

— Truly one of the “founders” of computer

science; this is just one of his many
contributions

— My favorite Dijkstra quote: “computer science
is no more about computers than astronomy is
about telescopes”

Dijkstra’s algorithm

 The idea: reminiscent of BFS, but adapted to
handle weights

— Grow the set of nodes whose shortest distance
has been computed

— Nodes not in the set will have a “best distance so
far”

— A priority queue will turn out to be useful for
efficiency

Dijkstra’s Azlgorithm: ldea

A B F H
l 5 2 1
10
4 9 3 (Gg)¥
v C 1
D 2 1 |
L E
7 12

* Initially, start node has cost 0 and all other nodes have cost «

* At each step:
— Pick closest unknown vertex v
— Add it to the “cloud” of known vertices
— Update distances for nodes with edges from v

 That'sit! (But we need to prove it produces correct answers)

CSE373: Data Structures &

Summer 2016 39 Algorithms

The Algorithm

For each node v, set v.cost = » and v.known =

false

Set source.cost = 0

While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost

b) Mark v as known

c) Foreachedge (v,u) with weight w,
cl = v.cost + w//costof best path through v to u

c2 = u.cost //costof best path to u previously known

if (cl < c2) { //if the path through v is better

u.cost = cl
u.path = v //for computing actual paths

}

Important features

* When a vertex is marked known, the cost of
the shortest path to that node is known

— The path is also known by following back-pointers

 While a vertex is still not known, another
shorter path to it might still be found

0 ¥ Y Y
B F H
1 5 2 1
10
4 9 3 ()W
¥
{D 2 1 |
E
7 ¥ vertex | known? cost path
A 0
B ??
C ??
D ?7?
Order Added to Known Set: e 29
F ?7?
G ?7?
H ??

CSE373: Data Structures &

Summer 2016 42 Algorithms

0 2 ¥ ¥
A B F H
1 5 2 1
10
4 9 3 ()W
v C 1
D 2 1 1
L E
7 ¥ vertex | known? cost path
A Y 0
B <2 A
C <1 A
D <4 A
Order Added to Known Set: e 29
27
A F 2
G ??
H ??
Summer 2016 43 CSE373: Data Structures &

Algorithms

0 2 W W
A B F H
1 5 2 1
10
4 9 3 (g)¥
v C 1
D 2 1 1
4 E
7 12 vertex | known? | cost path
A Y 0
B <2 A
C Y 1 A
D <4 A
Order Added to Known Set: c _ 12 c
27
A, C F L
G ??
H ??
summer 2016 44 CSE373: Data Structures &

Algorithms

0 2 4 W
A B F H
1 5 2 1
10
4 9 3 (G)¥
v C 1
D 2 1 1
4 E
7 12 vertex | known? | cost path
A Y 0
B Y 2 A
C Y 1 A
D <4 A
Order Added to Known Set: c _ 12 c
A, C, B F =< 4 B
G ??
H ??
summer 2016 45 CSE373: Data Structures &

Algorithms

0 E -
A B F
1
2
4 9 5 \10 e

v C 1

D 2 1 1
4 E
7 12

Order Added to Known Set:

A CB,D

Summer 2016

¥
H
1
¥
vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F <4 B
G ??
H ??

46

CSE373: Data Structures &

Algorithms

known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A
Order Added to Known Set: = 1o c
A, C,B,D,F F Y 4 B

G ??

H <7 F
Summer 2016 47 CSE373: Data Structures &

Algorithms

known? | cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A
Order Added to Known Set: E <12 C
A C,B,D,FH i Y : >

G <8 H

H Y 7 F

CSE373: Data Structures &

Summer 2016 48 Algorithms

known? | cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A
Order Added to Known Set: E <11 G
A,C,B,D,F, H,G i Y : &

G Y 8 H

H Y 7 F

CSE373: Data Structures &

Summer 2016 49 Algorithms

known? | cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A
Order Added to Known Set: E Y 1 G
A CB,D,F,HG,E i Y : >

G Y 8 H

H Y 7 F

CSE373: Data Structures &

Summer 2016 50 Algorithms

Features

* When a vertex is marked known,
the cost of the shortest path to that node is known

— The path is also known by following back-pointers

 While a vertex is still not known,
another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important
— A detail about how the algorithm works (client doesn’t care)
— Not used by the algorithm (implementation doesn’t care)

— Itis sorted by path-cost, resolving ties in some way
* Helps give intuition of why the algorithm works

Interpreting the Results

* Now that we’re done, how do we get the path

from, say, Ato E?

Order Added to Known Set:

A CB,D,FHGE

Summer 2016

52

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

CSE373: Data Structures &
Algorithms

Stopping Short

 How would this have worked differently if we were only

interested in:

— The path from Ato G?

— The pathfrom Ato E

Order Added to Known Set:

A CB,D,FHGE

Summer 2016

?
4

53

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

CSE373: Data Structures &
Algorithms

0 7 4
B
¥
2 g’ |
{C l D 5 3
N 6 10 G~ vertex | known? | cost path

F A 0
B ?7?
C ?7?
D ?7?
Order Added to Known Set: e 27
F ?7?
G ?7?

CSE373: Data Structures &

Summer 2016 >4 Algorithms

0 W

A 2 B

1
5
2{ |
y 1 D
5
7 &)
2N\ ¥ 10
F

Order Added to Known Set:

A

Summer 2016

W
E
3
G L4 vertex | known? cost path

A Y 0
B ?7?
C <2 A
D <1 A
E ?7?
F ?7?
G ?7?

55

CSE373: Data Structures &

Algorithms

Order Added to Known Set:

A D

Summer 2016

vertex | known? cost path

A Y 0

B <6 D
C <2 A
D Y 1 A
E <2 D
F <7 D
G <6 D

56

CSE373: Data Structures &

Algorithms

Order Added to Known Set:

A D,C

Summer 2016

vertex | known? cost path

A Y 0

B <6 D
C Y 2 A
D Y 1 A
E <2 D
F <4 C
G <6 D

57

CSE373: Data Structures &

Algorithms

Order Added to Known Set:

A D,CE

Summer 2016

vertex | known? cost path

A Y 0

B <3 E
C Y 2 A
D Y 1 A
E Y 2 D
F <4 C
G <6 D

58

CSE373: Data Structures &

Algorithms

Order Added to Known Set:

A D,CEB

Summer 2016

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F <4 C
G <6 D

59

CSE373: Data Structures &
Algorithms

vertex | known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A
Order Added to Known Set: = v > 5
A, D, CEB,F F Y 4 C

G <6 D

Summer 2016 60 CSE373: Data Structures &

Algorithms

Order Added to Known Set:

A D,CERB,FG

Summer 2016

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D

61

CSE373: Data Structures &

Algorithms

How will the best-cost-so-far for Y proceed?

Is this expensive?

CSE373: Data Structures &

mmmmm 2016 62 Algorithms

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once

CSE373: Data Structures &

Summer 2016 63 Algorithms

A Greedy Algorithm

* Dijkstra’s algorithm

— For single-source shortest paths in a weighted
graph (directed or undirected) with no negative-
weight edges

* An example of a greedy algorithm:

— At each step, irrevocably does what seems best at
that step

* A locally optimal step, not necessarily globally optimal

— Once a vertex is known, it is not revisited
* Turns out to be globally optimal

Where are We?

 Had a problem: Compute shortest paths in a
weighted graph with no negative weights

* Learned an algorithm: Dijkstra’s algorithm

 What should we do after learning an algorithm?

— Prove it is correct
 Not obvious!
* We will sketch the key ideas

— Analyze its efficiency
* Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path
— True initially: shortest path to start node has cost 0

— If it stays true every time we mark a node “known”, then by
induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we
won’t discover a shorter path later!

— This holds only because Dijkstra’s algorithm picks the node
with the next shortest path-so-far

— The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

Next shortest path from
inside the known cloud

Better path to
v? No!

OoThe Known
Cloud

Source

Suppose v is the next node to be marked known (“added to the cloud”)
* The best-known path to v must have only nodes “in the cloud”

— Else we would have picked a node closer to the cloud than v
e Suppose the actual shortest path to v is different

— It won’t use only cloud nodes, or we would know about it

— So it must use non-cloud nodes. Let w be the first non-cloud node on
this path. The part of the path up to w is already known and must be
shorter than the best-known path to v. So v would not have been

picked. Contradiction.
Summer 2016 CSE373: Data Strugfures & Algorithms

Nalve asymptotic running time
* Sofar: O(|V]?)

* We had a similar “problem” with topological sort
being O(|V|?) due to each iteration looking for
the node to process next
— We solved it with a queue of zero-degree nodes

— But here we need the lowest-cost node and costs can
change as we process edges

e Solution?

Improving asymptotic running time

e Sofar: O(|V]?)

* We had a similar “problem” with topological sort being
O(|V|?) due to each iteration looking for the node to
process next

— We solved it with a queue of zero-degree nodes

— But here we need the lowest-cost node and costs can
change as we process edges

e Solution?

— A priority queue holding all unknown nodes, sorted by cost

— But must support decreaseKey operation

* Must maintain a reference from each node to its current position
in the priority queue

* Conceptually simple, but can be a pain to code up

Summer 2016 69 CSE373: Data Structu.res &
Algorithms

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra (Graph ¢, Node) {
each : X.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
(heap 1s not empty) {
= deleteMin ()
.known = true
each edge (b,a) in
('a.known)
(b.cost + weight((b,a)) < a.cost) {
decreaseKey (a, "\new cost - old cost”)
a.path = Db

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra (Graph ¢, Node) {
each : X.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
(heap 1s not empty) {
= deleteMin () O(|V[log|V])
.known = true
each edge (b,a) in
('a.known)
(b.cost + weight((b,a)) < a.cost) { O(|E|log|V])
decreaseKey (a, "\new cost - old costf])
a.path = Db

(1V])

—_—
O(|V]log|V|+[E[log|V])

