Announcements

• Revised office hours for Dan this week
 – See email

• Review session tomorrow, 2-3pm

• Final review session poll out

• Today’s lecture:
 – Lots of material
 – Important to review on your own – very mechanical.
CSE373: Data Structures & Algorithms
Topological Sort / Graph Traversals / Dijkstra’s

Hunter Zahn
Summer 2016
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all vertices in an order such that no vertex appears before another vertex that has an edge to it

Example input:

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Disclaimer: This may be wrong. Don’t base your course schedules on this Material. Please…
Questions and comments

• **Why do we perform topological sorts only on DAGs?**
 – Because a cycle means there is no correct answer

• **Is there always a unique answer?**
 – No, there can be 1 or more answers; depends on the graph
 – Graph with 5 topological orders:

• **Do some DAGs have exactly 1 answer?**
 – Yes, including all lists

• **Terminology:** A DAG represents a *partial order* and a topological sort produces a *total order* that is consistent with it
Uses

• Figuring out how to graduate

• Computing an order in which to recompute cells in a spreadsheet

• Determining an order to compile files using a Makefile

• In general, taking a dependency graph and finding an order of execution

• ...

Summer 2016
A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex \(v \) with labeled with in-degree of 0
 b) Output \(v \) and \textit{conceptually} remove it from the graph
 c) For each vertex \(u \) adjacent to \(v \) (i.e. \(u \) such that \((v,u) \) in \(E \)), decrement the in-degree of \(u \)
Example

Output:

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?

In-degree: 0 0 2 1 1 1 1 1 1 1 3
Example

Output:

126

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: 0 0 2 1 1 1 1 1 1 3

Summer 2016
Example

Output:
126
142

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x
In-degree: 0 0 2 1 1 1 1 1 1 3

CSE 142 → CSE 143 → CSE 373 → CSE 374 → XYZ
CSE 410 → CSE 413 → CSE 415 → CSE 417
Example

Output:
126
142
143

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3

Summer 2016
Example

MATH 126 → CSE 142 → CSE 143 → CSE 373 → CSE 374 → CSE 410 → CSE 413 → CSE 415 → CSE 417 → XYZ

Output:

<table>
<thead>
<tr>
<th>Node</th>
<th>126</th>
<th>142</th>
<th>143</th>
<th>374</th>
<th>373</th>
<th>410</th>
<th>413</th>
<th>415</th>
<th>417</th>
<th>XYZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removed?</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-degree</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Summer 2016

CSE373: Data Structures & Algorithms
Example

Output:
126
142
143
374
373

Node:

<table>
<thead>
<tr>
<th></th>
<th>126</th>
<th>142</th>
<th>143</th>
<th>374</th>
<th>373</th>
<th>410</th>
<th>413</th>
<th>415</th>
<th>417</th>
<th>XYZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removed?</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-degree:</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

Output
:
126
142
143
374
373
417

Node:
126 142 143 374 373 410 413 415 417 XYZ

Removed?
x x x x x x x

In-degree:
0 0 2 1 1 1 1 1 1 3

1000000002
0
Example

Output:
126
142
143
374
373
410
417
410

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?: x x x x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 3

0 1 0 0 0 0 0 0 0 2
0 1
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
0 0 0 0 0 0 0 2 1 0
Output: 126 142 143 374 373 410 417 413
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 0 2
 0 1 0
 0

Output: 126 142 143 374 373 410 413 415 417 XYZ

CSE142 CSE143 CSE373 CSE374 CSE410 CSE413 CSE415 CSE417 XYZ
Example

Output:
126
142
143
374
373
410
413
417
XYZ
415

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x x x x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 1 3
1 0 0 0 0 0 0 0 0 2
0 1

0
Notice

• Needed a vertex with in-degree 0 to start
 – Will always have at least 1 because no cycles

• Ties among vertices with in-degrees of 0 can be broken arbitrarily
 – Can be more than one correct answer, by definition, depending on the graph
Running time?

```java
labelEachVertexWithItsInDegree();
for (ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```
Running time?

```java
labelEachVertexWithItsInDegree();
for (ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}
```

- What is the worst-case running time?
 - Initialization $O(|V| + |E|)$ (assuming adjacency list)
 - Outer loop: runs $|V|$ times
 - `findNewVertex`: $O(|V|)$
 - Sum of all decrements $O(|E|)$ (assuming adjacency list) (each edge is *removed* once)
 - So total is $O(|V|^2)$ – not good for a sparse graph!
Doing better

The trick is to avoid searching for a zero-degree node every time!
- Keep the “pending” zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that $(v,u) \in E$), decrement the in-degree of u, if new degree is 0, enqueue it
Running time?

```java
labelAllAndEnqueueZeros();
while queue not empty {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if (w.indegree==0)
            enqueue(v);
    }
}
```
Running time?

```java
labelAllAndEnqueueZeros();
while queue not empty {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
        w.indegree--;
        if (w.indegree==0)
            enqueue(v);
    }
}
```

- What is the worst-case running time?
 - Initialization: $O(|V|+|E|)$ (assuming adjacency list)
 - Sum of all enqueues and dequeues: $O(|V|)$
 - Sum of all decrements: $O(|E|)$ (assuming adjacency list)
 - So total is $O(|E| + |V|)$ – much better for sparse graph!
Next problem: For an arbitrary graph and a starting node v, find all nodes reachable from v (i.e., there exists a path from v)
 - Possibly “do something” for each node
 - Examples: print to output, set a field, etc.

• **Subsumed problem**: Is an undirected graph connected?
• **Related but different problem**: Is a directed graph strongly connected?
 - Need cycles back to starting node

Basic idea:
 - Keep following nodes
 - But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
Abstract Idea

```java
void traverseGraph(Node start) {
    Set pending = emptySet()
    pending.add(start)
    mark start as visited
    while (pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
            if (u is not marked) {
                mark u
                pending.add(u)
            }
    }
}
```
Running Time and Options

• Assuming **add** and **remove** are $O(1)$, entire traversal is $O(|E|)$
 – Use an adjacency list representation

• The order we traverse depends entirely on **add** and **remove**
 – Popular choice: a stack “depth-first graph search” \rightarrow DFS
 – Popular choice: a queue “breadth-first graph search” \rightarrow BFS

• **DFS** and **BFS** are “big ideas” in computer science
 – Depth: recursively explore one part before going back to the other parts not yet explored
 – Breadth: explore areas closer to the start node first

Cool visualization: http://visualgo.net/dfsbfs.html
Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```java
DFS(Node start) {
    mark and process start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

- A, B, D, E, C, F, G, H
- Exactly what we called a “pre-order traversal” for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once
Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS2(Node start) {
    initialize stack s to hold start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and push onto s
    }
}
```

- A, C, F, H, G, B, E, D
- A different but perfectly fine traversal
Example: trees

- A tree is a graph and DFS and BFS are particularly easy to “see”

BFS(Node start) {
 initialize queue q to hold start
 mark start as visited
 while(q is not empty) {
 next = q.dequeue() // and “process”
 for each node u adjacent to next
 if(u is not marked)
 mark u and enqueue onto q
 }
}

- A, B, C, D, E, F, G, H
- A “level-order” traversal
Comparison

• Breadth-first always finds shortest paths, i.e., “optimal solutions”
 – Better for “what is the shortest path from \(x\) to \(y\)”

• But depth-first can use less space in finding a path
 – If \(\text{longest path}\) in the graph is \(p\) and highest out-degree is \(d\) then DFS stack never has more than \(d \times p\) elements
 – But a queue for BFS may hold \(O(|V|)\) nodes

• A third approach:
 – \(\text{Iterative deepening (IDFS)}:\)
 • Try DFS but disallow recursion more than \(K\) levels deep
 • If that fails, increment \(K\) and start the entire search over
 – Like BFS, finds shortest paths. Like DFS, less space.
Saving the Path

• Our graph traversals can answer the reachability question:
 – “Is there a path from node x to node y?”

• But what if we want to actually output the path?
 – Like getting driving directions rather than just knowing it’s possible to get there!

• How to do it:
 – Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 – When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 – If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Tyler
- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique
Shortest Paths

Hunter Zahn
Summer 2016
Single source shortest paths

• Done: BFS to find the minimum path length from \(v \) to \(u \) in
 \(O(|E| + |V|) \)

• Actually, can find the minimum path length from \(v \) to every node
 – Still \(O(|E| + |V|) \)
 – No faster way for a “distinguished” destination in the worst-case

• Now: Weighted graphs

 Given a weighted graph and node \(v \),
 find the minimum-cost path from \(v \) to every node

• As before, asymptotically no harder than for one destination
• Unlike before, BFS will not work
Applications

• Driving directions

• Cheap flight itineraries

• Network routing

• Critical paths in project management
Not as easy

Why BFS won’t work: Shortest path may not have the fewest edges
 – Annoying when this happens with costs of flights

We will assume there are no negative weights
• Problem is ill-defined if there are negative-cost cycles
• Today’s algorithm is wrong if edges can be negative
 – There are other, slower (but not terrible) algorithms
Dijkstra

• Algorithm named after its inventor Edsger Dijkstra (1930-2002)
 – Truly one of the “founders” of computer science; this is just one of his many contributions

 – My favorite Dijkstra quote: “computer science is no more about computers than astronomy is about telescopes”
Dijkstra’s algorithm

• The idea: reminiscent of BFS, but adapted to handle weights
 – Grow the set of nodes whose shortest distance has been computed
 – Nodes not in the set will have a “best distance so far”
 – A priority queue will turn out to be useful for efficiency
Dijkstra’s Algorithm: Idea

• Initially, start node has cost 0 and all other nodes have cost ∞
• At each step:
 – Pick closest unknown vertex v
 – Add it to the “cloud” of known vertices
 – Update distances for nodes with edges from v
• That’s it! (But we need to prove it produces correct answers)
The Algorithm

1. For each node \(v \), set \(v\text{.cost} = \infty \) and \(v\text{.known} = \text{false} \)
2. Set \(\text{source.cost} = 0 \)
3. While there are unknown nodes in the graph
 a) Select the unknown node \(v \) with lowest cost
 b) Mark \(v \) as known
 c) For each edge \((v,u)\) with weight \(w \),

 \[c1 = v\text{.cost} + w \quad \text{// cost of best path through } v \text{ to } u \]

 \[c2 = u\text{.cost} \quad \text{// cost of best path to } u \text{ previously known} \]

 if \(c1 < c2 \){ // if the path through \(v \) is better

 \(u\text{.cost} = c1 \)

 \(u\text{.path} = v \quad \text{// for computing actual paths} \)
 }

Important features

• When a vertex is marked known, the cost of the shortest path to that node is known
 – The path is also known by following back-pointers

• While a vertex is still not known, another shorter path to it *might* still be found
Example #1

Order Added to Known Set:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>✓</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>≤ 1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>≤ 4</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:
A, C

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>≤ 2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>≤ 4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 12</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>

Order Added to Known Set:
Example #1

Order Added to Known Set:

A, C, B
Example #1

Order Added to Known Set:

A, C, B, D
Order Added to Known Set:

A, C, B, D, F

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 12</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>≤ 7</td>
<td>F</td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A, C, B, D, F, H

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 12</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤ 8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A, C, B, D, F, H, G

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A, C, B, D, F, H, G, E

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Features

• When a vertex is marked known, the cost of the shortest path to that node is known
 – The path is also known by following back-pointers

• While a vertex is still not known, another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important
 – A detail about how the algorithm works (client doesn’t care)
 – Not used by the algorithm (implementation doesn’t care)
 – It is sorted by path-cost, resolving ties in some way
 • Helps give intuition of why the algorithm works
Interpreting the Results

• Now that we’re done, how do we get the path from, say, A to E?

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>

Order Added to Known Set:
A, C, B, D, F, H, G, E
Stopping Short

- How would this have worked differently if we were only interested in:
 - The path from A to G?
 - The path from A to E?

Order Added to Known Set:

A, C, B, D, F, H, G, E

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

A

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>≤ 2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>≤ 1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

A, D

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>≤ 2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>≤ 2</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>≤ 7</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>

CSE373: Data Structures & Algorithms
Example #2

Order Added to Known Set:
A, D, C

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>≤ 6</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤ 4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤ 6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

A, D, C, E

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>≤ 3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤ 4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤ 6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C, E, B

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤ 4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤ 6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C, E, B, F

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

A, D, C, E, B, F, G

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #3

How will the best-cost-so-far for Y proceed?

Is this expensive?
Example #3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once
A Greedy Algorithm

• Dijkstra’s algorithm
 – For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges

• An example of a greedy algorithm:
 – At each step, irrevocably does what seems best at that step
 • A locally optimal step, not necessarily globally optimal
 – Once a vertex is known, it is not revisited
 • Turns out to be globally optimal
Where are We?

• Had a problem: Compute shortest paths in a weighted graph with no negative weights

• Learned an algorithm: Dijkstra’s algorithm

• What should we do after learning an algorithm?
 – Prove it is correct
 • Not obvious!
 • We will sketch the key ideas
 – Analyze its efficiency
 • Will do better by using a data structure we learned earlier!
Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path
 – True initially: shortest path to start node has cost 0
 – If it stays true every time we mark a node “known”, then by induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t discover a shorter path later!
 – This holds only because Dijkstra’s algorithm picks the node with the next shortest path-so-far
 – The proof is by contradiction...
Correctness: The Cloud (Rough Sketch)

Suppose v is the next node to be marked known (“added to the cloud”)

- The best-known path to v must have only nodes “in the cloud”
 - Else we would have picked a node closer to the cloud than v
- Suppose the actual shortest path to v is different
 - It won’t use only cloud nodes, or we would know about it
 - So it must use non-cloud nodes. Let w be the first non-cloud node on this path. The part of the path up to w is already known and must be shorter than the best-known path to v. So v would not have been picked. Contradiction.
Naïve asymptotic running time

- So far: $O(|V|^2)$

- We had a similar “problem” with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges

- Solution?
Improving asymptotic running time

• So far: $O(|V|^2)$

• We had a similar “problem” with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 – We solved it with a queue of zero-degree nodes
 – But here we need the lowest-cost node and costs can change as we process edges

• Solution?
 – A priority queue holding all unknown nodes, sorted by cost
 – But must support `decreaseKey` operation
 • Must maintain a reference from each node to its current position in the priority queue
 • Conceptually simple, but can be a pain to code up
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a, “new cost - old cost”)
 a.path = b
 }
 }
}
dijkstra(\text{Graph } G, \text{ Node } \text{start}) \{
\hspace{1em} \text{for each node: } x.\text{cost}=\text{infinity}, \ x.\text{known}=\text{false} \\
\hspace{2em} \text{start.}\text{cost} = 0 \\
\hspace{1em} \text{build-heap with all nodes} \\
\hspace{1em} \text{while (heap is not empty) } \{ \\
\hspace{2em} \text{b} = \text{deleteMin()} \\
\hspace{2em} \text{b.}\text{known} = \text{true} \\
\hspace{2em} \text{for each edge (b,a) in G} \\
\hspace{3em} \text{if (!a.}\text{known}) \\
\hspace{4em} \text{if (b.}\text{cost} + \text{weight((b,a))} < \text{a.}\text{cost})\{ \\
\hspace{5em} \text{decreaseKey(a, “new cost – old cost”)} \\
\hspace{5em} \text{a.}\text{path} = \text{b} \\
\hspace{4em} \} \\
\hspace{1em} \} \\
\}

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

\text{dijkstra} \{
\begin{align*}
\text{O}(|V|) & \\
\text{O}(|V|\log|V|) & \\
\text{O}(|E|\log|V|) & \\
\text{O}(|V|\log|V| + |E|\log|V|) &
\end{align*}
\}