Announcements

- Revised office hours for Dan this week
 - See email
- Review session tomorrow, 2-3pm
- Final review session poll out
- Today's lecture:
 - Lots of material
 - Important to review on your own very mechanical.

CSE373: Data Structures & Algorithms Topological Sort / Graph Traversals / Dijkstra's

Hunter Zahn Summer 2016

Topological Sort

Disclaimer: This may be wrong. Don't base your course schedules on this Material. Please...

Problem: Given a DAG **G= (V,E)**, output all vertices in an order such that no vertex appears before another vertex that has an edge to it

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Questions and comments

- Why do we perform topological sorts only on DAGs?
 - Because a cycle means there is no correct answer
- Is there always a unique answer?
 - No, there can be 1 or more answers; depends on the graph
 - Graph with 5 topological orders:
- Do some DAGs have exactly 1 answer?
 - Yes, including all lists

Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution

• ...

A First Algorithm for Topological Sort

- 1. Label ("mark") each vertex with its in-degree
 - Think "write in a field in the vertex"
 - Could also do this via a data structure (e.g., array)
 on the side
- 2. While there are vertices not yet output:
 - a) Choose a vertex **v** with labeled with in-degree of 0
 - b) Output **v** and *conceptually* remove it from the graph
 - c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?

In-degree: 0 0 2 1 1 1 1 1 3

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x

In-degree: 0 0 2 1 1 1 1 1 3

Removed? x x

In-degree: 0 0 2 1 1 1 1 1 3

Node: 126 142 143 374 373 410 413 415 417 XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ

CSE373: Data Structures & Algorithms

413

Node:	126 142	143	374	373	410	413	415	417	XY7
NOGC.	120 172	$\mathbf{T} \mathbf{T} \mathbf{J}$	<i>J /</i> T	<i>J 1 J</i>	TTO	$\tau \mathbf{I} \mathbf{J}$	TJ	71/	/\ I

CSE373: Data Structures & Algorithms

XYZ

Notice

- Needed a vertex with in-degree 0 to start
 - Will always have at least 1 because no cycles
- Ties among vertices with in-degrees of 0 can be broken arbitrarily
 - Can be more than one correct answer, by definition, depending on the graph

Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}</pre>
```

Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
        w.indegree--;
}</pre>
```

- What is the worst-case running time?
 - Initialization O(|V|+|E|) (assuming adjacency list)
 - Outer loop: runs |V| times
 - findNewVertex: O(|V|)
 - Sum of all decrements O(|E|) (assuming adjacency list) (each edge is removed once)
 - So total is $O(|V|^2)$ not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both O(1)

Using a queue:

- 1. Label each vertex with its in-degree, enqueue 0-degree nodes
- 2. While queue is not empty
 - a) **v** = dequeue()
 - b) Output **v** and remove it from the graph
 - c) For each vertex **u** adjacent to **v** (i.e. **u** such that (**v**,**u**) in **E**), decrement the in-degree of **u**, if new degree is 0, enqueue it

Running time?

Running time?

- What is the worst-case running time?
 - Initialization: O(|V|+|E|) (assuming adjacenty list)
 - Sum of all enqueues and dequeues: O(|V|)
 - Sum of all decrements: O(|E|) (assuming adjacency list)
 - So total is O(|E| + |V|) much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node **v**, find all nodes *reachable* from **v** (i.e., there exists a path from **v**)

- Possibly "do something" for each node
- Examples: print to output, set a field, etc.
- Subsumed problem: Is an undirected graph connected?
- Related but different problem: Is a directed graph strongly connected?
 - Need cycles back to starting node

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract Idea

```
void traverseGraph(Node start) {
     Set pending = emptySet()
     pending.add(start)
     mark start as visited
     while(pending is not empty) {
       next = pending.remove()
       for each node u adjacent to next
          if (u is not marked) {
             mark u
             pending.add(u)
```

Running Time and Options

- Assuming add and remove are O(1), entire traversal is O(|E|)
 - Use an adjacency list representation
- The order we traverse depends entirely on add and remove
 - Popular choice: a stack "depth-first graph search" → DFS
 - Popular choice: a queue "breadth-first graph search" → BFS
- DFS and BFS are "big ideas" in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: explore areas closer to the start node first

Cool visualization: http://visualgo.net/dfsbfs.html

Example: trees

A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS (Node start) {
   mark and process start
   for each node u adjacent to start
   if u is not marked
     DFS(u)
}
```

- A, B, D, E, C, F, G, H
- Exactly what we called a "pre-order traversal" for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once

Example: trees

A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS2(Node start) {
  initialize stack s to hold start
  mark start as visited
  while(s is not empty) {
    next = s.pop() // and "process"
    for each node u adjacent to next
      if(u is not marked)
        mark u and push onto s
  }
}
```

- A, C, F, H, G, B, E, D
- A different but perfectly fine traversal

Example: trees

A tree is a graph and DFS and BFS are particularly easy to "see"


```
BFS (Node start) {
   initialize queue q to hold start
   mark start as visited
   while (q is not empty) {
      next = q.dequeue() // and "process"
      for each node u adjacent to next
      if (u is not marked)
        mark u and enqueue onto q
   }
}
```

- A, B, C, D, E, F, G, H
- A "level-order" traversal

Comparison

- Breadth-first always finds shortest paths, i.e., "optimal solutions"
 - Better for "what is the shortest path from x to y"
- But depth-first can use less space in finding a path
 - If longest path in the graph is p and highest out-degree is d then DFS stack never has more than d*p elements
 - But a queue for BFS may hold O(|V|) nodes
- A third approach:
 - Iterative deepening (IDFS):
 - Try DFS but disallow recursion more than K levels deep
 - If that fails, increment K and start the entire search over
 - Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

- Our graph traversals can answer the reachability question:
 - "Is there a path from node x to node y?"
- But what if we want to actually output the path?
 - Like getting driving directions rather than just knowing it's possible to get there!
- How to do it:
 - Instead of just "marking" a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 - When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 - If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Shortest Paths

Hunter Zahn Summer 2016

Single source shortest paths

- Done: BFS to find the minimum path length from v to u in
 O(|E|+|V|)
- Actually, can find the minimum path length from v to every node
 - Still O(|E|+|V|)
 - No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node **v**, find the minimum-cost path from **v** to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work

Applications

Driving directions

Cheap flight itineraries

Network routing

Critical paths in project management

Not as easy

Why BFS won't work: Shortest path may not have the fewest edges

Annoying when this happens with costs of flights

We will assume there are no negative weights

- *Problem* is *ill-defined* if there are negative-cost *cycles*
- Today's algorithm is wrong if edges can be negative
 - There are other, slower (but not terrible) algorithms

Dijkstra

- Algorithm named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the "founders" of computer
 science; this is just one of his many
 contributions

 My favorite Dijkstra quote: "computer science is no more about computers than astronomy is about telescopes"

Dijkstra's algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a "best distance so far"
 - A priority queue will turn out to be useful for efficiency

Dijkstra's Algorithm: Idea

- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the "cloud" of known vertices
 - Update distances for nodes with edges from v
- That's it! (But we need to prove it produces correct answers)

The Algorithm

- 1. For each node \mathbf{v} , set $\mathbf{v}.\mathbf{cost} = \infty$ and $\mathbf{v}.\mathbf{known} = \mathbf{false}$
- 2. Set source.cost = 0
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node **v** with lowest cost
 - b) Mark **v** as known
 - c) For each edge (v,u) with weight w,
 c1 = v.cost + w// cost of best path through v to u
 c2 = u.cost // cost of best path to u previously known
 if(c1 < c2) { // if the path through v is better
 u.cost = c1
 u.path = v // for computing actual paths
 }</pre>

Important features

- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers

 While a vertex is still not known, another shorter path to it *might* still be found

Order Added to Known Set:

vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
Е		??	
F		??	
G		??	
Н		??	

Order Added to Known Set:

Α

vertex	known?	cost	path
Α	Y	0	
В		≤ 2	Α
С		≤ 1	Α
D		≤ 4	Α
E		??	
F		??	
G		??	
Н		??	

Order Added to Known Set:

A, C

vertex	known?	cost	path
Α	Y	0	
В		≤ 2	Α
С	Υ	1	Α
D		≤ 4	Α
E		≤ 12	С
F		??	
G		??	
Н		??	

Order Added to Known Set:

A, C, B

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D		≤ 4	Α
Е		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

Order Added to Known Set:

A, C, B, D

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
Е		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

Order Added to Known Set:

A, C, B, D, F

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Y	4	Α
E		≤ 12	С
F	Y	4	В
G		??	
Н		≤ 7	F

Order Added to Known Set:

A, C, B, D, F, H

vertex	known?	cost	path
Α	Y	0	
В	Υ	2	Α
С	Υ	1	Α
D	Y	4	Α
E		≤ 12	С
F	Y	4	В
G		≤ 8	Н
Н	Y	7	F

Order Added to Known Set:

A, C, B, D, F, H, G

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Y	4	Α
E		≤ 11	G
F	Y	4	В
G	Υ	8	Н
Н	Y	7	F

Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
Α	Υ	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
Е	Y	11	G
F	Υ	4	В
G	Y	8	Н
Н	Υ	7	F

Features

- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way
 - Helps give intuition of why the algorithm works

Interpreting the Results

 Now that we're done, how do we get the path from, say, A to E?

Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
Α	Υ	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
E	Y	11	G
F	Υ	4	В
G	Υ	8	Н
Н	Y	7	F

Stopping Short

- How would this have worked differently if we were only interested in:
 - The path from A to G?

Order Added to Known Set:

A, C, B, D, F, H, G, E

		_	
vertex	known?	cost	path
Α	Υ	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
E	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Υ	7	F

Order Added to Known Set:

vertex	known?	cost	path
А		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	

Order Added to Known Set:

A

vertex	known?	cost	path
Α	Y	0	
В		??	
С		≤ 2	Α
D		≤ 1	Α
Е		??	
F		??	
G		??	

Order Added to Known Set:

A, D

vertex	known?	cost	path
Α	Y	0	
В		≤ 6	D
С		≤ 2	Α
D	Υ	1	Α
Е		≤ 2	D
F		≤ 7	D
G		≤ 6	D

Order Added to Known Set:

A, D, C

vertex	known?	cost	path
Α	Y	0	
В		≤ 6	D
С	Y	2	Α
D	Y	1	Α
Е		≤ 2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E

vertex	known?	cost	path
Α	Υ	0	
В		≤ 3	Е
С	Υ	2	Α
D	Υ	1	Α
Е	Υ	2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E, B

vertex	known?	cost	path
Α	Υ	0	
В	Y	3	Е
С	Υ	2	Α
D	Y	1	Α
E	Y	2	D
F		≤ 4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E, B, F

vertex	known?	cost	path
Α	Y	0	
В	Y	3	Е
С	Y	2	Α
D	Y	1	Α
Е	Y	2	D
F	Y	4	С
G		≤ 6	D

Order Added to Known Set:

A, D, C, E, B, F, G

vertex	known?	cost	path
Α	Υ	0	
В	Y	3	E
С	Υ	2	Α
D	Υ	1	Α
E	Y	2	D
F	Υ	4	С
G	Y	6	D

How will the best-cost-so-far for Y proceed?

Is this expensive?

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- Dijkstra's algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negativeweight edges
- An example of a greedy algorithm:
 - At each step, irrevocably does what seems best at that step
 - A locally optimal step, not necessarily globally optimal
 - Once a vertex is known, it is not revisited
 - Turns out to be globally optimal

Where are We?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights
- Learned an algorithm: Dijkstra's algorithm
- What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
 - Analyze its efficiency
 - Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Sketch)

Suppose v is the next node to be marked known ("added to the cloud")

- The best-known path to v must have only nodes "in the cloud"
 - Else we would have picked a node closer to the cloud than v
- Suppose the actual shortest path to v is different
 - It won't use only cloud nodes, or we would know about it
 - So it must use non-cloud nodes. Let w be the *first* non-cloud node on this path. The part of the path up to w is already known and must be shorter than the best-known path to v. So v would not have been picked. Contradiction.

Naïve asymptotic running time

• So far: $O(|V|^2)$

- We had a similar "problem" with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?

Improving asymptotic running time

- So far: $O(|V|^2)$
- We had a similar "problem" with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges

Solution?

- A priority queue holding all unknown nodes, sorted by cost
- But must support decreaseKey operation
 - Must maintain a reference from each node to its current position in the priority queue
 - Conceptually simple, but can be a pain to code up

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if (!a.known)
       if (b.cost + weight((b,a)) < a.cost) {</pre>
         decreaseKey(a, "new cost - old cost")
         a.path = b
```

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
                                                  O(|V|\log|V|)
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if (!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
                                                  O(|E|\log|V|)
         decreaseKey(a, "new cost - old cost"
          a.path = b
                                           O(|V|\log|V|+|E|\log|V|)
```