CSE373: Data Structures & Algorithms
Implementing Union-Find

Hunter Zahn
Summer 2016
Announcements

• HW3 due tomorrow at 11PM
 – Remember, you’re not merging WordInfos!

• Midterm Friday!

• Midterm Review in-class Wednesday
 – No TA Review session Thursday

• No Office hours Friday post-midterm
 – We’ll be busy grading your exams
The plan

Last lecture:

• What are disjoint sets
 — And how are they “the same thing” as equivalence relations

• The union-find ADT for disjoint sets

• Applications of union-find

Now:

• Basic implementation of the ADT with “up trees”

• Optimizations that make the implementation much faster
Review: ADT Operations

• Given an unchanging set S, **create** an initial partition of a set
 – Typically each item in its own subset: \{a\}, \{b\}, \{c\}, ...
 – Give each subset a “name” by choosing a *representative element*

• Operation **find** takes an element of S and returns the representative element of the subset it is in

• Operation **union** takes two subsets and (permanently) makes one larger subset
 – A different partition with one fewer set
 – Affects result of subsequent **find** operations
 – Choice of representative element up to implementation
Our goal

• Start with an initial partition of \(n \) subsets
 – Often 1-element sets, e.g., \{1\}, \{2\}, \{3\}, ..., \{n\}

• May have \(m \) \texttt{find} operations and up to \(n-1 \) \texttt{union} operations in any order
 – After \(n-1 \) \texttt{union} operations, every \texttt{find} returns same 1 set

• If total for all these operations is \(O(m+n) \), then amortized \(O(1) \)
 – We will get very, very close to this
 – \(O(1) \) worst-case is impossible for \texttt{find} and \texttt{union}
 • Trivial for one or the other
How should we “draw” this data structure?

• Saw with heaps that a more intuitive depiction of the data structure can help us better conceptualize the operations.
Up-tree data structure

• Tree with:
 – No limit on branching factor
 – References from children to parent

• Start with forest of 1-node trees

 1 2 3 4 5 6 7

• Possible forest after several unions:
 – Will use roots for set names
Find

find(x):

- *Assume we have* $O(1)$ *access to each node*
- *Start at* x *and follow parent pointers to root*
- *Return the root*

$$\text{find}(6) = 7$$
union(x,y):

- Assume x and y are roots
 - If they are not, just find the roots of their trees
- Assume distinct trees (else do nothing)
- Change root of one to have parent be the root of the other
 - Notice no limit on branching factor

union(1,7)
Okay, how can we represent it internally?
Simple implementation

- If set elements are contiguous numbers (e.g., 1, 2, ..., n), use an array of length n called `up`
 - Starting at index 1 on slides
 - Put in array index of parent, with 0 (or -1, etc.) for a root

- Example:

```
1   2   3   4   5   6   7
up  0   0   0   0   0   0   0
```

```
1  3

2下 6

5  4

1  2  3  4  5  6  7
up  0  1  0  7  7  5  0
```

- If set elements are not contiguous numbers, could have a separate dictionary to map elements (keys) to numbers (values)
Implement operations

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {
 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 // y = find(y)
 // x = find(x)
 up[y] = x;
}

- Worst-case run-time for union?
- Worst-case run-time for find?
- Worst-case run-time for m finds and n-1 unions?
Implement operations

```c
// assumes x in range 1,n
int find(int x) {
    while(up[x] != 0) {
        x = up[x];
    }
    return x;
}
```

```c
// assumes x,y are roots
void union(int x, int y) {
    // y = find(y)
    // x = find(x)
    up[y] = x;
}
```

- Worst-case run-time for `union`? \(O(1)\) (with our assumption...)
- Worst-case run-time for `find`? \(O(n)\)
- Worst-case run-time for \(m\) `finds` and \(n-1\) `unions`? \(O(m \times n)\)
The plan

Last lecture:

• What are *disjoint sets*
 – And how are they “the same thing” as *equivalence relations*

• The union-find ADT for disjoint sets

• Applications of union-find

Now:

• Basic implementation of the ADT with “up trees”

• *Optimizations that make the implementation much faster*
Two key optimizations

1. Improve \texttt{union} so it stays $O(1)$ but makes \texttt{find} $O(\log n)$

2. Improve \texttt{find} so it becomes even faster
Two key optimizations

1. Improve **union** so it stays $O(1)$ but makes **find** $O(\log n)$
 - So m finds and $n-1$ unions is $O(m \log n + n)$
 - *Union-by-size*: connect smaller tree to larger tree

2. Improve **find** so it becomes even faster
 - Make m finds and $n-1$ unions *almost* $O(m + n)$
 - *Path-compression*: connect directly to root during finds

$n = \# \text{ of elements}$
The bad case to avoid

1 2 3 ... n

union(2,1)

union(3,2)

... n

union(n,n-1)

find(1) n steps!!
Weighted union:

– Always point the *smaller* (total # of nodes) tree to the root of the larger tree

$$\text{union}(1, 7)$$
Weighted union

Weighted union:

– Always point the *smaller* (total # of nodes) tree to the root of the larger tree
Weighted union

Weighted union:

– Always point the *smaller* (total # of nodes) tree to the root of the larger tree
Weighted union

• What happens if we point the larger tree to the root of the smaller tree?
Array implementation

Keep the weight (number of nodes in a second array)

– Or have one array of objects with two fields
Nifty trick

Actually we do not need a second array...

– Instead of storing 0 for a root, store negation of weight

– So up value < 0 means a root
Bad example? Great example...

\begin{itemize}
 \item union(2,1)
 \item union(3,2)
 \item union(n,n-1)
 \item find(1) \textit{constant here}
\end{itemize}
General analysis

• Showing that one worst-case example is now good is *not* a proof that the worst-case has improved

• So let’s prove:
 – `union` is still $O(1)$ – this is fairly easy to show
 – `find` is now $O(\log n)$

• Claim: If we use weighted-union, an up-tree of height h has at least 2^h nodes
 – Proof by induction on h...
Exponential number of nodes

\(P(h) = \) With weighted-union, up-tree of height \(h \) has at least \(2^h \) nodes

Proof by induction on \(h \)...

- **Base case:** \(h = 0 \): The up-tree has 1 node and \(2^0 = 1 \)
- **Inductive case:** Assume \(P(h) \) and show \(P(h+1) \)
 - A height \(h+1 \) tree \(T \) has at least one height \(h \) child \(T_1 \)
 - \(T_1 \) has at least \(2^h \) nodes by induction
 - And \(T \) has *at least* as many nodes not in \(T_1 \) than in \(T_1 \)
 - Else weighted-union would have had \(T \) point to \(T_1 \), not \(T_1 \) point to \(T \) (!!)
 - So total number of nodes is *at least* \(2^h + 2^h = 2^{h+1} \)
The key idea

Intuition behind the proof: No one child can have more than half the nodes.

So, as usual, if number of nodes is exponential in height, then height is logarithmic in number of nodes.

So \textbf{find} is \(O(\log n)\)
The new worst case

n/2 Weighted Unions

n/4 Weighted Unions
The new worst case (continued)

After $\frac{n}{2} + \frac{n}{4} + \ldots + 1$ Weighted Unions:

Height grows by 1 a total of $\log n$ times
What about union-by-height

We could store the height of each root rather than number of descendants (weight)

• Still guarantees logarithmic worst-case find
 – Proof left as an exercise if interested

• But does not work well with our next optimization
 – Maintaining height becomes inefficient, but maintaining weight still easy
Two key optimizations

1. Improve union so it stays $O(1)$ but makes find $O(\log n)$
 - So m finds and $n-1$ unions is $O(m \log n + n)$
 - Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster
 - Make m finds and $n-1$ unions almost $O(m + n)$
 - Path-compression: connect directly to root during find
Path compression

• Simple idea: As part of a `find`, change each encountered node’s parent to point directly to root
 – Faster future `finds` for everything on the path (and their descendants)
Solution

(good example of psuedocode!)

```cpp
// performs path compression
find(i)
  // find root
  r = i
  while up[r] > 0
    r = up[r]

  // compress path
  if i == r
    return r

  old_parent = up[i]
  while (old_parent != r)
    up[i] = r
    i = old_parent
    old_parent = up[i]

  return r
```
So, how fast is it?

A single worst-case \texttt{find} could be \(O(\log n)\)
 – But only if we did a lot of worst-case unions beforehand
 – And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than \(O(\log n)\)
 – We won’t \textit{prove} it – see text if curious
 – But we will \textit{understand} it:
 • How it is \textit{almost} \(O(1)\)
 • Because total for \textit{m finds} and \textit{n-1 unions} is \textit{almost} \(O(m+n)\)
A really slow-growing function

\(\log^*(x) \) is the minimum number of times you need to apply \(\log \) of \(\log \) of \(\log \) of \(\log \) of” to go from \(x \) to a number \(\leq 1 \)

For just about every number we care about, \(\log^*(x) \) is 5 (!)

If \(x \leq 2^{65536} \) then \(\log^* x \leq 5 \)
 \[\begin{align*}
 \log^* 2 &= 1 \\
 \log^* 4 &= \log^* 2^2 = 2 \\
 \log^* 16 &= \log^* 2^{(2^2)} = 3 \\
 \log^* 65536 &= \log^* 2^{((2^2)^2)} = 4 \\
 \log^* 2^{65536} &= \ldots \ldots = 5
\end{align*} \]
Wait.... how big?

Just how big is 2^{65536}

Well $2^{10} = 1024$
$2^{20} = 1048576$
$2^{30} = 1073741824$
$2^{100} = 1.125 \times 10^{15}$
$2^{65536} = \ldots$ pretty big

But its still not technically constant
Almost linear

• Turns out total time for \(m \) finds and \(n-1 \) unions is:
 \(O((m+n)\ast(\log^* (m+n))) \)
 – Remember, if \(m+n < 2^{65536} \) then \(\log^* (m+n) < 5 \)

• At this point, it feels almost silly to mention it, but even that bound is not tight...
 – “Inverse Ackerman’s function” grows even more slowly than \(\log^* \)
 • Inverse because Ackerman’s function grows really fast
 • Function also appears in combinatorics and geometry
 • For any number you can possibly imagine, it is < 4
 – Can replace \(\log^* \) with “Inverse Ackerman’s” in bound
Theory and terminology

• Because \log^* or Inverse Ackerman’s grows so incredibly slowly
 – For all practical purposes, amortized bound is constant, i.e., total cost is linear
 – We say “near linear” or “effectively linear”

• Need weighted-union and path-compression for this bound
 – Path-compression changes height but not weight, so they interact well

• As always, asymptotic analysis is separate from “coding it up”
Exam Topics

• Everything we’ve covered, up through this lecture is fair game
• AVL Tree problem incoming!

• Good luck studying!