CSE373: Data Structures & Algorithms
Implementing Union-Find

Hunter Zahn
Summer 2016

Summer 2016 CSE373: Data Structures & Algorithms

Announcements

HW3 due tomorrow at 11PM
— Remember, you’re not merging WordInfos!

Midterm Friday!
Midterm Review in-class Wednesday

— No TA Review session Thursday

No Office hours Friday post-midterm

— We'll be busy grading your exams

The plan

Last lecture:

 What are disjoint sets
— And how are they “the same thing” as equivalence relations

 The union-find ADT for disjoint sets

* Applications of union-find

Now:
e Basic implementation of the ADT with “up trees”

 Optimizations that make the implementation much
faster

Review: ADT Operations

* Given an unchanging set S, create an initial partition of a set
— Typically each item in its own subset: {a}, {b}, {c}, ...
— Give each subset a “name” by choosing a representative element

 Operation £ind takes an element of S and returns the
representative element of the subset itis in

e Operation union takes two subsets and (permanently) makes
one larger subset

— A different partition with one fewer set
— Affects result of subsequent £ind operations
— Choice of representative element up to implementation

CSE373: Data Structures &

Summer 2016 4 Algorithms

Our goal

Start with an initial partition of n subsets
— Often 1-element sets, e.g., {1}, {2}, {3}, ..., {n}

May have m £ind operations and up to n-1 union
operations in any order

— After n-1 union operations, every £ind returns same 1 set

If total for all these operations is O(m+n), then amortized
O(1)
— We will get very, very close to this

— O(1) worst-case is impossible for £ind and union
* Trivial for one or the other

How should we “draw” this data
structure?

* Saw with heaps that a more intuitive depiction
of the data structure can help us better
conceptualize the operations.

Up-tree data structure

 Tree with:
— No limit on branching factor
— References from children to parent

e Start with forest of 1-node trees

O @ 6w e © @

 Possible forest after several unions:

— Will use roots for
set names
C

SE373: Data Structures &

Summer 2016 Algorithms

Find

find(x):
— Assume we have O(1) access to each node
— Start at x and follow parent pointers to root
— Return the root

Find(6) =7 @ ©,

(@/g

CSE373: Data Structures &

Summer 2016 8 Algorithms

Union

union(x,y):
— Assume x and y are roots
* If they are not, just find the roots of their trees
— Assume distinct trees (else do nothing)
— Change root of one to have parent be the root of the

other
* Notice no limit on branching factor

union(1,7) /@ \@

CSE373: Data Structures &

Summer 2016 2 6 Algorithms

mmmmm

Okay, how can we represent it
internally?

CSE373: Data Structures & Algorithms

10

Simple implementation

* |If set elements are contiguous numbers (e.g., 1,2,...,n), use
an array of length n called up
— Starting at index 1 on slides
— Putin array index of parent, with O (or -1, etc.) for a root

e Example:
P 1 2 3 4 5 6 7

@@@@@@@ up |0[0|0|0|0|0]|O0

@ @ a 12 3 45 6 7

up |0|1(0|7|7]|5|0
5 D @
(6)

* |f set elements are not contiguous numbers, could have a separate
dictionary to map elements (keys) to numbers (values)

Summer 2016 CSE373: Data Structures & Algorithms 11

Implement operations

// assumes x in range 1,n
int find(int x) {
while (up[x] '= 0) {
X = upl[x];
}

return Xx;

// assumes x,y are roots
void union(int x, int v)

g

uply] = x;

 Worst-case run-time for union?

e Worst-case run-time for £ind?

e Worst-case run-time for m £inds and n-1

unions?

Summer 2016

CSE373: Data Structures &
Algorithms

Implement operations

// assumes x in range 1,n
int find(int x) {

while (up[x] '= 0) {
up [x];

X:

}

return Xx;

// assumes x,y are roots
void union(int x, int vy){

uply] = x;

}

e Worst-case run-time for union? 0(1) (with our assumption...)

e Worst-case run-time for £ind?

O(n)

e Worst-case run-time for m £inds and n-1 O(m *n)

unions?

Summer 2016

13

CSE373: Data Structures &
Algorithms

The plan

Last lecture:

 What are disjoint sets
— And how are they “the same thing” as equivalence relations

 The union-find ADT for disjoint sets

* Applications of union-find

Now:
* Basic implementation of the ADT with “up trees”

 Optimizations that make the implementation much faster

CSE373: Data Structures &

Summer 2016 14 Algorithms

Two key optimizations

1. Improve union so it stays O(1) but makes
find O(logn)

2. Improve £ind so it becomes even faster

Two key optimizations

1. Improve union so it stays O(1) but makes
find O(logn)
— Som £inds and n-1 unionsis O(m 1logn + n)
— Union-by-size: connect smaller tree to larger tree

2. Improve £ind so it becomes even faster
— Make m £inds and n-1 unions almost O(m + n)
— Path-compression: connect directly to root during
finds
n = # of elements

mmmmm

The bad case to avoid

@ @ @ @ union(2,1)
@ @ @ union(3,2)

/@> o @ unic;n(n,n-'l)

(2)
Q{ /@ find(1) n steps!!

/@

@

of

CSE373: Data Structures &

17

Algorithms

Weighted union

Weighted union:

— Always point the smaller (total # of nodes) tree to
the root of the larger tree

union(1,7)

2 1 @ 4 ﬂ
(5) (4
(6

CSE373: Data Structures &

Summer 2016 18 Algorithms

Weighted union

Weighted union:

— Always point the smaller (total # of nodes) tree to
the root of the larger tree

union(1,7)

CSE373: Data Structures &
Algorithms

Weighted union

Weighted union:

— Always point the smaller (total # of nodes) tree to
the root of the larger tree

union(1,7)

1 ® 6\

5 W
(6

Summer 2016 CSE373: Data Structures & Algorithms 20

Weighted union

 What happens if we point the larger tree to
the root of the smaller tree?

Array implementation

Keep the weight (humber of nodes in a second

array)
— Or have one array of objects with two fields
11 @ 4] (7, 1234567
5) (4) up |0]1]0|7]7]5/0
weight | 2 1 4
1 2 3 456 7
1 up | 71110|7[7/5]0
weight 1 6

CSE373: Data Structures &
Algorithms

Summer

Nifty trick

Actually we do not need a second array...
— Instead of storing O for a root, store negation of
weight
— So up value < 0 means a root

1 2 345 6 7

up|0]1]0]7]7]5|0
weight | 2 1

AN

3 456
0(7]7]|5

up |/
weight 1

CSE373: Data Structures &
Algorithms

o O N

Summer

Bad example? Great example...

1 2 © (n) union(2,1)
@ @ @ union(3,2)

of
() union(n,n-1)
S o

G{ @% find(1) constant here

2016 CSE373: Data Structures &

dmmer 24 Algorithms

General analysis

* Showing that one worst-case example is now
good is not a proof that the worst-case has
improved

* So let’s prove:
— union is still O(1) — this is fairly easy to show
— £findis now O(log n)

e Claim: If we use weighted-union, an up-tree of
height h has at least 2" nodes

— Proof by induction on h...

Exponential number of nodes

P(h)= With weighted-union, up-tree of height h has at
least 2" nodes

Proof by induction on h...

 Base case: h=0:The up-tree has 1 node and 2°=1

* |nductive case: Assume P(h) and show P(h+1)
— A height h+1 tree T has at least one height h child T1
— T1 has at least 2" nodes by induction

— And T has at least as many nodes notin T1 thanin T1
* Else weighted-union would have T

had T point to T1, not T1 pointto T (!!)
— So total number of nodes is at least 2"+ 2= 2h+1

— > A

The key idea

Intuition behind the proof: No one child can have more

than half the nodes
T

A

So, as usual, if number of nodes is exponential in height,
then height is logarithmic in number of nodes

— > A

So £ind is O(logn)

The new worst case

n/2 Weighted Unions

58588838 &

n/4 Weighted Unions

5% 5% % %

CSE373: Data Structures &

ummer 2016 28 Algorithms

The new worst case (continued)

After n/2 + n/4 + ...+ 1 Weighted Unions:

R N

Height grows by 1 a total of 10g n times find

CSE373: Data Structures &

Summer 2016 29 Algorithms

What about union-by-height

We could store the height of each root rather than
number of descendants (weight)

 Still guarantees logarithmic worst-case find
— Proof left as an exercise if interested

 But does not work well with our next
optimization
— Maintaining height becomes inefficient, but
maintaining weight still easy

Two key optimizations

1. Improve union so it stays O(1) but makes
find O(logn)
— Som £inds and n-1unionsis O(m 1logn + n)
— Union-by-size: connect smaller tree to larger tree

2. Improve £ind so it becomes even faster
— Make m £inds and n-1 unions almost O(m + n)

— Path-compression: connect directly to root during
finds

CSE373: Data Structures &

Summer 2016 31 Algorithms

Path compression

e Simple idea: As part of a £ind, change each
encountered node’s parent to point directly to
root

— Faster future £inds for everything on the path (and
their descendants)

ONNORN s
L @ o b SOk
b S& W e @ &

Summer 2016 37 CSE373: Data Structu.res &
Algorithms
11 19

Solution

(good exampleof psuedocode!)

Summer 2016

// performs path compression
find (1)
// find root
r =1
while up[r] > O
r = uplr]

// compress path
1f 1 ==«

return r

old parent = up([1i]

while (old parent != r)
upl[i] = r
1 = old parent

old parent = upl[i]

return r

CSE373: Data Structures &
33 .
Algorithms

So, how fast is it?

A single worst-case £ind could be O(1log n)

— But only if we did a lot of worst-case unions
beforehand

— And path compression will make future finds faster

Turns out the amortized worst-case bound is much
better than O(1og n)
— We won’t prove it — see text if curious

— But we will understand it:
 How it is almost O(1)
* Because total for m £inds and n-1 unions is almost O(m+n)

A really slow-growing function

log* (x) is the minimum number of times you need to
apply “1og of 1log of 1log of” togofromxtoa
number <=1

For just about every number we care about, Log*(x) is 5
()

If x <= 26553¢then log* x <=5

—log*2=1
— log* 4 =log* 22 =2
— log* 16 = log* 229 =3 (log(log(log(16))) = 1)

— log* 65536 = log* 2(22) = 4 (10g(logflog(iog(65536)) = 1)
— log* 26236 = ... =5

Wait.... how big?

Just how big is 26>°36

Well 210=1024
220=1048576
230=1073741824
2100 = 1,125x10%°
26>336 = pretty big

But its still not technically constant

CSE373: Data Structures &

Summer 2016 36 Algorithms

Almost linear

e Turns out total time for m £inds and n-1 unionsis:
O((m+n)*(Log* (m+n))
— Remember, if m+n < 25°>3% then log* (m+n) <5

e At this point, it feels almost silly to mention it, but
even that bound is not tight...
— “Inverse Ackerman’s function” grows even more slowly
than log*
* Inverse because Ackerman’s function grows really fast
* Function also appears in combinatorics and geometry
* For any number you can possibly imagine, itis< 4

— Can replace 1log* with “Inverse Ackerman’s” in bound

Theory and terminology

Because 1og* or Inverse Ackerman’s grows so incredibly
slowly

— For all practical purposes, amortized bound is constant, i.e.,
total cost is linear

— We say “near linear” or “effectively linear”

Need weighted-union and path-compression for this
bound

— Path-compression changes height but not weight, so they
interact well

As always, asymptotic analysis is separate from “coding it
up”

Exam Topics

* Everything we’ve covered, up through this
lecture is fair game

 AVL Tree problem incoming!

* Good luck studying!

