CSE 373 Summer 2016 Homework 2

Due Thursday, $7 / 7$ at 11PM
Name:
UWID (not your student number):

1) $\mathrm{Big}-\mathrm{O}$

For each of the following, show that $f \in O(g)$. That is, you will need to find values for \mathbf{c} and n 0 such that the definition of big-O holds true as we did with the examples in lecture. It may help to look at the handwritten example from lecture.
a) $f(n)=12 n^{2}+2500$
$g(n)=n^{3}$
b) $f(n)=3(\log (n)+1)$
$g(n)=2 n$
c) $f(n)=7 n$

$$
g(n)=\frac{n}{15}
$$

2) Runtime Analysis

For each of the following program fragments, determine the asymptotic runtime in terms of n.
a)

```
public void mysteryOne(int n) {
    int y = 1;
    for (int j = 0; j < ((n * n - 5) / 4); j++) {
        for (int i = 0; i < n; i ++) {
        y *= y;
        }
    }
}
```

b)

```
public void mysteryTwo(int n) \{
    int \(x=0\);
    for (int \(\mathrm{i}=\mathrm{n}+3\); i >= 0; i - - ) \{
        if (i \% 4 == 0) \{
            break;
        \} else \{
            for (int j = 1; j < n; j *= 2) \{
                x++;
            \}
        \}
    \}
\}
```

c)

```
public void mysteryThree(int n) {
    for (int i = 0; i < n; j++) {
        helper(i);
    }
}
private void helper(int x) {
    if (x > 0) {
        helper(x - 2);
    }
}
```


3) More Asymptotic Analysis

For each of the following, determine if $f \in \mathrm{O}(\mathrm{g}), f \in \Omega(\mathrm{~g}), f \in \Theta(\mathrm{~g})$, several of these, or none of these.
a) $f(n)=75 n^{3}+2$
$g(n)=n^{3}+6 n+n^{2}$
b) $f(n)=3^{n}$
$g(n)=n^{3}$
c) $f(n)=\log (n)$
$g(n)=\log (\log (n))$

4) Pseudocode and Recurrence Relations

a) Write pseudocode for a function that calculates the largest difference between any two numbers in an array of positive integers with a runtime in $\Theta\left(n^{2}\right)$.
For example, the largest difference between any two numbers in the following array would be 19. $a=[4,6,3,9,2,1,20]$
b) Can this function be written with a runtime in $\Theta(n)$? If yes, write pseudocode below. If no, why? What would have to be different about the input in order to do so?
c) Can this function be written with a runtime in $\Theta(1)$?. If yes, write pseudocode below. If no, why? What would have to be different about the input in order to do so?

5) Recurrence Relations

Note: For both of these problems, the base case can be $T(c)=d$, where both c and d are constants.
We are asking for the tightest Big-Oh bound in a) and b).
For example, the tightest big-oh bound for $f(n)=5 n$ is $O(n)$, not $O\left(n^{2}\right)$
a) Find the tightest Big-Oh bound for the following recurrence relation $T(n)=n+T(n / 2)$. Justify your answer.
b) Find the tightest Big-Oh bound for the following recurrence relation $T(n)=n+2 T(n / 2)$. Justify your answer.

6) Growth Rates

Order the following functions from slowest to fastest in terms of asymptotic runtime. Be sure to show whether two functions have the same asymptotic runtime.

Ex: $5 n<3 n^{2}=n^{2}$

- n^{72}
- $\mathrm{n}^{2} \log (\mathrm{n})$
- $2^{(n / 2)}$
- $\log (n)$
- $n \log \left(n^{2}\right)$
- n^{6}
- $n \log (\log (n))$
- $n \log ^{2}(n)$
- n
- n^{2}
- $\mathrm{n} \log (\mathrm{n})$
- 2^{n}
- $\log ^{2}(\mathrm{n})$
- 2/n
- $2^{(1 / 2)}$

7) Induction

Use induction to prove that $\sum_{i=1}^{n} i^{2}=\frac{1}{6} n(n+1)(2 n+1)$ for $n>=1$
Be sure to clearly mark each step, and where you use the inductive hypothesis.

