1. For each of the following applications, choose the best structure from the following list. If some other structure may also be a good choice, list it after the best one.

- linked list
- stack
- queue
- AVL tree
- B⁺-tree
- hash table
- binary min-heap
- adjacency matrix
- adjacency list
- union-find (up-tree) structure

(a) A structure, which can be easily updated, for keeping track of which students went to the same high school.

\[\text{union-find (up-tree)} \]

(b) A structure for storing the nodes with no more incoming edges in a topological sort algorithm.

\[\text{queue} \]

(c) A structure that allows rapid access to all nodes adjacent to a given one in a graph without going through every node.

\[\text{adjacency list} \]

(d) A structure that has multiple keys per node and \(\log N \) levels.

\[\text{B⁺-tree} \]
2. Give the time complexity of each of the following in Big-Oh notation, assuming worst-case unless otherwise specified:

(a) Producing an ordering of nodes in a directed acyclic graph such that each node comes after all its “prerequisite” nodes.
\[O(1E1 + 1V1) \] for \(|E| \) edges and \(|V| \) vertices.

(b) Finding the correct leaf node to search in a B+-tree.
\[O\left(\log N\right) \] for \(N \) items.

(c) Finding a key in a hash table that uses chaining.
\[O(N) \] in worst case if \(\text{all } N \text{ items hash to one bucket} \).

(d) Finding the minimal cost paths from a start node to all other nodes in a digraph using the most efficient algorithm known.
\[O\left(|E| \log |V| + |V| \log |V|\right) \]
\[= O\left(|E| + |V| \log |V|\right) \]

(e) Performing the union operation on two sets after performing the two finds.
\[O(1) \]

(f) Deleting a key from a min-heap.
\[O(\log N) \] for \(N \) elements.

(g) Removing an item from a queue implemented with a circular array.
\[O(1) \]
3. Show how to insert the following sequence of keys into an initially empty AVL tree. Show each step and show all separate rebalancing operations. The sequence is: 5, 4, 3, 2, 1

Insert 5

\[
\begin{array}{c}
5
\end{array}
\]

Insert 4

\[
\begin{array}{c}
5
\end{array}
\]

Insert 3

\[
\begin{array}{c}
5 \\
4 \\
3
\end{array}
\]

\[
\begin{array}{c}
5 \\
4 \\
3
\end{array}
\]

Insert 2

\[
\begin{array}{c}
5 \\
4 \\
3 \\
2
\end{array}
\]

\[
\begin{array}{c}
5 \\
4 \\
3 \\
2
\end{array}
\]

Insert 1

\[
\begin{array}{c}
5 \\
4 \\
3 \\
2 \\
1
\end{array}
\]

\[
\begin{array}{c}
5 \\
4 \\
3 \\
2 \\
1
\end{array}
\]

4. Show how to insert the same 5 elements into an empty heap, starting with an array, using the efficient BuildHeap. First convert the initial array 5 4 3 2 1 to its tree form. Then show each step in the BuildHeap procedure with trees. Finally, convert back to an array.

\[
\begin{array}{c}
5 \\
4 \\
3 \\
2 \\
1
\end{array}
\]

Step 1. At the 4

\[
\begin{array}{c}
5 \\
3 \\
4
\end{array}
\]

Step 2. At the 5

\[
\begin{array}{c}
5 \\
3 \\
4
\end{array}
\]

\[
\begin{array}{c}
5 \\
3 \\
4
\end{array}
\]

\[
\begin{array}{c}
1 \\
3 \\
2 \\
5 \\
4
\end{array}
\]

\[
\begin{array}{c}
1 \\
3 \\
2 \\
5
\end{array}
\]

\[
\begin{array}{c}
1 \\
3 \\
2
\end{array}
\]

\[
\begin{array}{c}
1 \\
3 \\
2
\end{array}
\]

\[
\begin{array}{c}
1 \\
3 \\
2
\end{array}
\]

\[
\begin{array}{c}
1 \\
3 \\
2
\end{array}
\]

\[
\begin{array}{c}
1 \\
3 \\
2
\end{array}
\]
5. Show how to insert the following sequence into an initially empty B+-tree that has a max of 2 keys (and 3 pointers) per interior node and 2 keys per leaf. Show the tree at each step. 45, 61, 32, 89, 100, 2, 6

1. 45

2. 45/61

3. 3 2 —> 45/61

4. 3 2 —> 45/61 —> 61/89

5. 3 2 —> 45/61 —> 61/89 —> 89/100

6. [2 32] no other changes

6. Show how to insert the following keys into an initially empty hash table of size 7 with indexes 0-6 using the hash function \(h(i) = i \mod 7 \): 49, 8, 7, 42, 48, 35

(a) with chaining (just show the final result and insert at the front of the lists)

(b) with linear probing (show each of the 6 steps horizontally).

(c) with quadratic probing (show each of the 6 steps horizontally) and indicate if it cannot insert.

\[\begin{array}{ccccccc}
49 & 49 & 49 & 49 & 49 & 49 & 49 \\
8 & 8 & 8 & 8 & 8 & 8 & 8 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 \\
42 & 42 & 42 & 42 & 42 & 42 & 42 \\
48 & 48 & 48 & 48 & 48 & 48 & 48 \\
35 & 35 & 35 & 35 & 35 & 35 & 35 \\
\end{array} \]
7. Given the following weighted digraph:

(a) Starting at node a, list the nodes in the order of a depth-first traversal (when there is a choice, choose the smaller-lettered node first).

\[a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \]

(b) Starting at node a, list the nodes in the order of a breadth-first traversal (when there is a choice, choose the smaller-lettered node first).

\[a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \]

(c) Show how the Dijkstra algorithm finds the shortest path from node a to all other nodes. At each step, show what node is selected, what gets changed, and the new distance on each node. If there is a tie, choose alphabetically.

<table>
<thead>
<tr>
<th>Step</th>
<th>Selected</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>∞</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>e</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>
8. Given the following weighted, undirected graph:

![Graph Image]

Use the Kruskal algorithm to find a minimal spanning tree of the graph. At each step, list the chosen edge, explain any that are considered but not chosen, and show the changes to the tree in progress. The last step would show the finished tree.

Step 1. Edge Chosen

(1, 2)

Tree in Progress

1 — 2

Step 2. Edge Chosen

(1, 4)

Tree in Progress

1 — 2

Step 3. Edge Chosen

(2, 4) × Loop

(3, 5)

Tree in Progress

1 — 2

Step 4. Edge Chosen

(3, 5)

Tree in Progress

1 — 2 — 3 — 5 — 4 — 7
9. Given the following small digraph $G_A = (V_A, E_A)$ and larger digraph $G_B = (V_B, E_B)$, find a subgraph isomorphism from V_A to V_B. Verify that your mapping is indeed a subgraph isomorphism by checking each edge. Show all your work. You only need to do it for one isomorphism if there are several.

Your answer is **ONE ISOMORPHISM** expressed as 4 pairs (no tree needed) and 4 edge checks worked out.

\[
\begin{align*}
\text{isomorphism} & \\
h(1) &= e \\
h(2) &= f \\
h(3) &= c \\
h(4) &= d \\
(1, 2) &\in G_A \quad \text{and} \quad (e, f) \in G_B \\
(1, 3) &\in G_A \quad \text{and} \quad (e, c) \in G_B \\
(2, 4) &\in G_A \quad \text{and} \quad (f, d) \in G_B \\
(3, 4) &\in G_A \quad \text{and} \quad (c, d) \in G_B
\end{align*}
\]
10. Given the following unsorted array:

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
8 & 57 & 2 & 124 & 100 & 28 & 95 & 1 \\
\end{array}
\]

(a) Show how it would be sorted by QuickSort with pivot 24. (Just the top level, no recursive calls.)

\[
\text{Exchange pivot with 70} \\
24 \quad 57 \quad 2 \quad 8 \quad 100 \quad 28 \quad 95 \quad 1 \\
\]

\[
\text{swap} \\
24 \\
\]

\[
24 \quad 1 \quad 2 \quad 8 \quad 100 \quad 28 \quad 95 \quad 51 \\
\]

\[
\text{swap w pivot} \\
\text{ok} \quad \text{ok} \quad \text{ok} \quad \text{ok} \\
\]

\[
8 \quad 1 \quad 2 \quad 24 \quad 100 \quad 28 \quad 95 \quad 51 \\
\]

(b) Now sort each of the two sides using Insertion Sort, showing each step and the final result.

\[
\begin{array}{cccccccc}
8 & 1 & 2 & 100 & 28 & 95 & 51 \\
18 & 2 & 28 & 95 & 100 & 51 \\
12 & 8 & 28 & 51 & 95 & 100 \\
\end{array}
\]

\[
24 \\
\]

\[
1.28 \quad 24 \quad 28 \quad 51 \quad 95 \quad 100 \\
\]
11. A binary tree is implemented with a TreeNode class that has the following public members.

```java
public class TreeNode {
    public int value;
    public TreeNode left;
    public TreeNode right;
    ...
}
```

Write a recursive function CopyTree(TreeNode root) that is given a reference to the root of
a (possibly empty - represented as null) binary tree to be copied. It should build and return
a reference to the root of a duplicate copy of the tree. You may use the default constructor
for the TreeRoot class to build new TreeNodes.

```java
public TreeNode CopyTree(TreeNode root) {
    if (root == null) {  // 1
        return null;
    }
    TreeNode copiedRoot = new TreeNode();
    copiedRoot.value = root.value;
    copiedRoot.left = CopyTree(root.left);
    copiedRoot.right = CopyTree(root.right);
    return copiedRoot;
}
```