CSE373: Data Structures and Algorithms
Lecture 4: Asymptotic Analysis

Linda Shapiro
Spring 2016
Efficiency

- What does it mean for an algorithm to be efficient?
 - We primarily care about time (and sometimes space)
- Is the following a good definition?
 - “An algorithm is efficient if, when implemented, it runs quickly on real input instances”
 - What does “quickly” mean?
 - What constitutes “real input?”
 - How does the algorithm scale as input size changes?
Gauging efficiency (performance)

- Uh, why not just run the program and time it?
 - Too much *variability*, not reliable or *portable*:
 - Hardware: processor(s), memory, etc.
 - OS, Java version, libraries, drivers
 - Other programs running
 - Implementation dependent
 - Choice of input
 - Testing (inexhaustive) may *miss* worst-case input
 - Timing does not *explain* relative timing among inputs
 (what happens when \(n \) doubles in size)
 - Often want to evaluate an *algorithm*, not an implementation
 - Even *before* creating the implementation (“coding it up”)
Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?

- Various possible answers (clarity, security, …)
- But a big one is *performance*: for sufficiently large inputs, runs in less time (our focus) or less space

We will focus on large inputs because probably any algorithm is “plenty good” for small inputs (if n is 10, probably anything is fast)

- Time difference really shows up as n grows

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and timing it on some test cases”

- Can do analysis before coding!
We usually care about worst-case running times

- Has proven reasonable in practice
 - Provides some guarantees
- Difficult to find a satisfactory alternative
 - What about average case?
 - Difficult to express full range of input
 - Could we use randomly-generated input?
 - May learn more about generator than algorithm
Example

Find an integer in a *sorted* array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    ???
}
```
Linear search

Find an integer in a *sorted* array

```
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k){
    for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
            return true;
    return false;
}
```

Best case?
k is in arr[0]
c1 steps
= \(O(1) \)

Worst case?
k is not in arr
c2*(arr.length)
= \(O(arr.length) \)
Binary search

Find an integer in a sorted array

– Can also be done non-recursively but “doesn’t matter” here

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {  
    int mid = (hi + lo) / 2; // i.e., lo + (hi-lo)/2
    if (lo == hi) return false;
    if (arr[mid] == k) return true;
    if (arr[mid] < k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```
Binary search

Best case: \(c_1 \) steps = \(O(1) \)

Worst case: \(T(n) = c_2 \) steps + \(T(n/2) \) where \(n \) is \(\text{hi-lo} \)
- \(O(\log n) \) where \(n \) is \(\text{array.length} \)
- Solve *recurrence equation* to know that...

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
 - \(T(n) = c_2 + T(n/2) \) \(T(1) = c_1 \) first eqn.

2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.
 - \(T(n) = c_2 + c_2 + T(n/4) \) 2nd eqn.
 - \(= c_2 + c_2 + c_2 + T(n/8) \) 3rd eqn.
 - \(= \ldots \)
 - \(= c_2(k) + T(n/(2^k)) \) kth eqn.

3. Find a closed-form expression by setting the argument of \(T \) to a value (e.g. \(n/(2^k) = 1 \)) which reduces the problem to a base case
 - \(n/(2^k) = 1 \) means \(n = 2^k \) means \(k = \log_2 n \)
 - So \(T(n) = c_2 \log_2 n + T(1) \)
 - So \(T(n) = c_2 \log_2 n + c_1 \) (get to base case and do it)
 - So \(T(n) \) is \(O(\log n) \)
Ignoring constant factors

- So binary search is \(O(\log n) \) and linear search is \(O(n) \)
 - But which is faster?

- Could depend on constant factors
 - How many assignments, additions, etc. for each \(n \)
 - E.g. \(T(n) = 5,000,000n \) vs. \(T(n) = 5n^2 \)
 - And could depend on overhead unrelated to \(n \)
 - E.g. \(T(n) = 5,000,000 + \log n \) vs. \(T(n) = 10 + n \)

- But there exists some \(n_0 \) such that for all \(n > n_0 \) binary search wins

- Let’s play with a couple plots to get some intuition…
Example

- Let’s try to “help” linear search
 - Run it on a computer 100x as fast (say 2016 model vs. 1994)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search
Big-Oh relates functions

We use O on a function $f(n)$ (for example n^2) to mean *the set of functions with asymptotic behavior less than or equal to* $f(n)$

So $(3n^2+17)$ is in $O(n^2)$
- $3n^2+17$ and n^2 have the same asymptotic behavior

Confusingly, we also say/write:
- $(3n^2+17)$ is $O(n^2)$
- $(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$
Big-O, formally

Definition: \(g(n) \) is in \(O(f(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that

\[
g(n) \leq c \cdot f(n) \quad \text{for all } n \geq n_0
\]

- To show \(g(n) \) is in \(O(f(n)) \), pick a \(c \) large enough to “cover the constant factors” and \(n_0 \) large enough to “cover the lower-order terms”
 - Example: Let \(g(n) = 3n^2 + 17 \) and \(f(n) = n^2 \)
 - \(c = 5 \) and \(n_0 = 10 \) is more than good enough
 \[
 (3 \cdot 10^2) + 17 \leq 5 \cdot 10^2 \quad \text{so} \quad 3n^2 + 17 \text{ is } O(n^2)
 \]
- This is “less than or equal to”
 - So \(3n^2 + 17 \) is also \(O(n^5) \) and \(O(2^n) \) etc.
 - But usually we’re interested in the **tightest** upper bound.
Example 1, using formal definition

- Let $g(n) = 1000n$ and $f(n) = n$
 - To prove $g(n)$ is in $O(f(n))$, find a valid c and n_0
 - We can just let $c = 1000$.
 - That works for any n_0, such as $n_0 = 1$.
 - $g(n) = 1000n \leq c f(n) = 1000n$ for all $n \geq 1$.

Definition: $g(n)$ is in $O(f(n))$ if there exist positive constants c and n_0 such that

$$g(n) \leq c f(n) \text{ for all } n \geq n_0$$
Example 1’, using formal definition

- Let $g(n) = 1000n$ and $f(n) = n^2$
 - To prove $g(n)$ is in $O(f(n))$, find a valid c and n_0
 - The “cross-over point” is $n=1000$
 - $g(n) = 1000\times1000$ and $f(n) = 1000^2$
 - So we can choose $n_0=1000$ and $c=1$
 - Then $g(n) = 1000n \leq c f(n) = 1n^2$ for all $n \geq 1000$

Definition: $g(n)$ is in $O(f(n))$ if there exist positive constants c and n_0 such that

$$g(n) \leq c f(n) \quad \text{for all } n \geq n_0$$
Examples 1 and 1’

• Which is it?
• Is \(g(n) = 1000n \) called \(f(n) \) or \(f(n^2) \)?

• By definition, it can be either one.
• We prefer to use the smallest one.
Example 2, using formal definition

- Let $g(n) = n^4$ and $f(n) = 2^n$
 - To prove $g(n)$ is in $O(f(n))$, find a valid c and n_0
 - We can choose $n_0 = 20$ and $c = 1$
 - $g(n) = 20^4$ vs. $f(n) = 1 \times 2^{20}$
 - $160,000$ vs. $1,048,576$
 - $g(n) = n^4 \leq c f(n) = 1 \times 2^n$ for all $n \geq 20$
 - If I were doing a complexity analysis, would I pick $O(2^n)$?

Definition: $g(n)$ is in $O(f(n))$ if there exist positive constants c and n_0 such that

$$g(n) \leq c f(n) \quad \text{for all } n \geq n_0$$
Comparison

<table>
<thead>
<tr>
<th>n</th>
<th>n^4</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10,000</td>
<td>1,024</td>
</tr>
<tr>
<td>20</td>
<td>160,000</td>
<td>1,048,576</td>
</tr>
<tr>
<td>30</td>
<td>810,000</td>
<td>1,073,741,824</td>
</tr>
<tr>
<td>40</td>
<td>2,560,000</td>
<td>1.0995x10^{12}</td>
</tr>
</tbody>
</table>
What’s with the c

- The constant multiplier \(c \) is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity.

Consider:

\[
\begin{align*}
g(n) &= 7n+5 \\
f(n) &= n
\end{align*}
\]

- These have the same asymptotic behavior (linear)
 - So \(g(n) \) is in \(O(f(n)) \) even through \(g(n) \) is always larger
 - The \(c \) allows us to provide a coefficient so that \(g(n) \leq c \cdot f(n) \)

In this example:
- To prove \(g(n) \) is in \(O(f(n)) \), have \(c = 12, \ n_0 = 1 \)
 - \((7*1)+5 \leq 12*1\)
What you can drop

- Eliminate coefficients because we don’t have units anyway
 - $3n^2$ versus $5n^2$ doesn’t mean anything when we have not specified the cost of constant-time operations
 - Both are $O(n^2)$

- Eliminate low-order terms because they have vanishingly small impact as n grows
 - $5n^5 + 40n^4 + 30n^3 + 20n^2 + 10^n + 1$ is $O(n^5)$

- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - 3^n is not $O(2^n)$
Upper and Lower Bounds

f1(x) is an upper bound for g(x); f2(x) is a lower bound.

\[g(x) \leq f1(x) \text{ and } g(x) \geq f2(x). \]
More Asymptotic* Notation

- Upper bound: $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
 - $g(n)$ is in $O(f(n))$ if there exist constants c and n_0 such that
 $g(n) \leq c f(n)$ for all $n \geq n_0$

- Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
 - $g(n)$ is in $\Omega(f(n))$ if there exist constants c and n_0 such that
 $g(n) \geq c f(n)$ for all $n \geq n_0$

- Tight bound: $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$
 - $g(n)$ is in $\theta(f(n))$ if both $g(n)$ is in $O(f(n))$ and $g(n)$ is in $\Omega(f(n))$
Correct terms, in theory

A common error is to say $O(f(n))$ when you mean $\theta(f(n))$

- Since a linear algorithm is also $O(n^5)$, it’s tempting to say “this algorithm is exactly $O(n)$”
- That doesn’t mean anything, say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- “little-oh”: intersection of “big-Oh” and not “big-Theta”
 - For all c, there exists an n_0 such that… \leq
 - Example: array sum is $O(n)$ and $o(n^2)$ but not $o(n)$
- “little-omega”: intersection of “big-Omega” and not “big-Theta”
 - For all c, there exists an n_0 such that… \geq
 - Example: array sum is $O(n)$ and $\omega(\log n)$ but not $\omega(n)$
What we are analyzing: Complexity

• The most common thing to do is give an \(O \) upper bound to the worst-case running time of an algorithm

• Example: binary-search algorithm
 – Common: \(O(\log n) \) running-time in the worst-case
 – Less common: \(\theta(1) \) in the best-case (item is in the middle)
 – Less common (but very good to know): the find-in-sorted-array problem is \(\Omega(\log n) \) in the worst-case (lower bound)
 • No algorithm can do better
 • A problem cannot be \(O(f(n)) \) since you can always make a slower algorithm
Other things to analyze

• Space instead of time
 – Remember we can often use space to gain time

• Average case
 – Sometimes only if you assume something about the probability distribution of inputs
 – Sometimes uses randomization in the algorithm
 • Will see an example with sorting
 – Sometimes an amortized guarantee
 • Average time over any sequence of operations
Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)
• Time or space (usually time)
 – Or power or dollars or …
• Best-, worst-, or average-case (usually worst)
• Upper-, lower-, or tight-bound (usually upper or tight)
Addendum: Timing vs. Big-Oh Summary

• Big-oh is an essential part of computer science’s mathematical foundation
 – Examine the algorithm itself, not the implementation
 – Reason about (even prove) performance as a function of n

• Timing also has its place
 – Compare implementations
 – Focus on data sets you care about (versus worst case)
 – Determine what the constant factors “really are”
Practice: What is the big-Oh complexity?

1. $g(n) = 45n \log n + 2n^2 + 65$

2. $g(n) = 1000000n + .01 \times 2^n$

3. ```
 int sum = 0;
 for (int i = 0; i < n; i=i+2){
 sum = sum + i;
 }
``` 

4. ```
   int sum = 0;
   for (int i = n; i > 1; i=i/2){
       sum = sum + i;
   }
```