CSE373: Data Structure & Algorithms
Lecture 22: More Sorting

Linda Shapiro
Spring 2016
Announcements

• HW 5 due June 1
• Final Exam June 7
Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Merge sort: Sort the left half of the elements (recursively)
 Sort the right half of the elements (recursively)
 Merge the two sorted halves into a sorted whole

2. Quick sort: Pick a “pivot” element
 Divide elements into less-than pivot
 and greater-than pivot
 Sort the two divisions (recursively on each)
 Answer is sorted-less-than then pivot then
 sorted-greater-than
Quick sort

- A divide-and-conquer algorithm
 - Recursively chop into two pieces
 - Instead of doing all the work as we merge together, we will do all the work as we recursively split into halves
 - Unlike merge sort, does not need auxiliary space

- $O(n \log n)$ on average \smile, but $O(n^2)$ worst-case \frowney

- Faster than merge sort in practice?
 - Often believed so
 - Does fewer copies and more comparisons, so it depends on the relative cost of these two operations!
Quicksort Overview

1. Pick a pivot element

2. Partition all the data into:
 A. The elements less than the pivot
 B. The pivot
 C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is, “as simple as A, B, C”
Think in Terms of Sets

S

13 81 43 31 57 75 0
92

select pivot value

S1

13 0 43 31
26 57

partition S

S2

81 92 75
65

Quicksort(S1) and
Quicksort(S2)

S1

0 13 26 31 43 57

S2

65

75 81 92

Presto! S is sorted

Notice: S1 and S2 are not of equal sizes.

[Weiss]
Example, Showing Recursion

Divide

Divide

Divide

1 Element

Conquer

Conquer

Conquer

Conquer

1 2 3 4

8 2 9 4 5 3 1 6
Details

Have not yet explained:

• How to pick the pivot element
 – Any choice is correct: data will end up sorted
 – But as analysis will show, want the two partitions to be about equal in size

• How to implement partitioning
 – In linear time
 – In place
Pivots

• Best pivot?
 – Median
 – Halve each time
 – Why can’t we use it?

• Worst pivot?
 – Greatest/least element
 – Problem of size n - 1
 – $O(n^2)$
Potential pivot rules

While sorting \texttt{arr} from \texttt{lo} to \texttt{hi-1} …

- Pick \texttt{arr[lo]} or \texttt{arr[hi-1]}
 - Fast, but worst-case occurs with mostly sorted input

- Pick random element in the range
 - Does as well as any technique, but (pseudo)random number generation can be slow
 - Still probably the most elegant approach

- Median of 3, e.g., \texttt{arr[lo]}, \texttt{arr[hi-1]}, \texttt{arr[(hi+lo)/2]}
 - Common heuristic that tends to work well
Partitioning

- Conceptually simple, but hardest part to code up correctly
 - After picking pivot, need to partition in linear time in place

- One approach (there are slightly fancier ones):
 1. Swap pivot with \texttt{arr[lo]}
 2. Use two pointers \textit{i} and \textit{j}, starting at \texttt{lo+1} and \texttt{hi-1}
 3. while (\textit{i} < \textit{j})
 - if (arr[\textit{j}] > pivot) \textit{j}--
 - else if (arr[\textit{i}] < pivot) \textit{i}++
 - else swap arr[\textit{i}] with arr[\textit{j}]
 4. Swap pivot with \texttt{arr[\textit{i}]} *

*skip step 4 if pivot ends up being least element
Example

- Step one: pick pivot as median of 3
 - $lo = 0$, $hi = 10$

```
0  1  2  3  4  5  6  7  8  9
8  1  4  9  0  3  5  2  7  6
```

- Step two: move pivot to the lo position

```
0  1  2  3  4  5  6  7  8  9
6  1  4  9  0  3  5  2  7  8
```
Example

Now partition in place

Move pointers

Swap

Move pointers

Move pivot

Often have more than one swap during partition – this is a short example
Practice on the left half

5 | 1 | 4 | 2 | 0 | 3

Three values for pivot: 5, 3, 4; median 4
Practice on the left half

Three values for pivot: 5, 3, 4; median 4

Swap the pivot with the lo position.

Set up pointers at beginning and end.

Left pointer can move, since 1 < 4, but right pointer can’t, since 3 not > 4.

SWAP and move pointers

Left pointer can move, since 2 < 4

SWAP with the pivot
Quick sort visualization

Analysis

• Best-case: Pivot is always the median
 \[T(0)=T(1)=1 \]
 \[T(n)=2T(n/2) + n \quad -- \text{linear-time partition} \]
 Same recurrence as merge sort: \(O(n \log n) \)

• Worst-case: Pivot is always smallest or largest element
 \[T(0)=T(1)=1 \]
 \[T(n) = 1T(n-1) + n \]
 Basically same recurrence as selection sort: \(O(n^2) \)

• Average-case (e.g., with random pivot)
 -- \(O(n \log n) \), not responsible for proof (in text)
Cutoffs

• For small n, all that recursion tends to cost more than doing a quadratic sort
 – Remember asymptotic complexity is for large n

• Common engineering technique: switch algorithm below a cutoff
 – Reasonable rule of thumb: use insertion sort for $n < 10$

• Notes:
 – Could also use a cutoff for merge sort
 – Cutoffs are also the norm with parallel algorithms
 • Switch to sequential algorithm
 – None of this affects asymptotic complexity
How Fast Can We Sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$

- Comparison sorting in general is $\Omega(n \log n)$
 - An amazing computer-science result: proves all the clever programming in the world cannot comparison-sort in linear time
Surprising amount of juicy computer science: 2-3 lectures…

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort

Handling huge data sets

How???
- Change the model – assume more than “compare(a,b)”
Bucket Sort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range):
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - *If* data is only integers, no need to store more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

- Example:
 - $K=5$
 - input (5,1,3,4,3,2,1,1,5,4,5)
 - output: 1,1,1,2,3,3,4,4,5,5,5
Visualization

Analyzing Bucket Sort

• Overall: $O(n+K)$
 – Linear in n, but also linear in K
 – $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort

• Good when K is smaller (or not much larger) than n
 – We don’t spend time doing comparisons of duplicates

• Bad when K is much larger than n
 – Wasted space; wasted time during linear $O(K)$ pass

• For data in addition to integer keys, use list at each bucket
Bucket Sort with Data

What does this look like?

- Most real lists aren’t just keys; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, insert in $O(1)$ (at beginning, or keep pointer to last element)

<table>
<thead>
<tr>
<th>count array</th>
<th>Rocky V</th>
<th>Harry Potter</th>
<th>Casablanca</th>
<th>Star Wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Example: Movie ratings; scale 1-5; 1=bad, 5=excellent
 - Input=
 - 5: Casablanca
 - 3: Harry Potter movies
 - 5: Star Wars Original Trilogy
 - 1: Rocky V
 - Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
- Easy to keep ‘stable’; Casablanca still before Star Wars
Radix sort

- Radix = “the base of a number system”
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128

- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit
 - Keeping sort stable
 - Do one pass per digit
 - Invariant: After k passes (digits), the last k digits are sorted

- Aside: Origins go back to the 1890 U.S. census
History: Punched Card
History: IBM Sorting Machine
Example

Radix = 10

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
<td>721</td>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td>537</td>
<td>478</td>
<td>38</td>
<td>9</td>
</tr>
</tbody>
</table>

Input: 478 537 9 721 3 38 143 67

First pass:
bucket sort by ones digit

Order now: 721 3 143 537 67 478 38 9
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>721</td>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td>537</td>
<td>67</td>
<td>478</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>721</td>
<td>537</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order was: 721 3 143 537 67 478 38 9

Second pass: stable bucket sort by tens digit

Order now: 3 9 721 537 38 143 67 478
Example

Radix = 10

Order was:

3
9
721
537
38
143
67
478

Order now:

3
9
38
67

Third pass:
stable bucket sort by 100s digit
Analysis

Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: $O(B+n)$

Total work is $O(P(B+n))$

Compared to comparison sorts, sometimes a win, but often not
 – Example: Strings of English letters up to length 15
 • Run-time proportional to: $15*(52 + n)$
 • This is less than $n \log n$ only if $n > 33,000$
 • Of course, cross-over point depends on constant factors of
 the implementations
 – And radix sort can have poor locality properties
Sorting massive data

• Need sorting algorithms that minimize disk/tape access time:
 – Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
 – Merge sort scans linearly through arrays, leading to (relatively) efficient sequential disk access

• Merge sort is the basis of massive sorting

• Merge sort can leverage multiple disks
External Merge Sort

- Sort 900 MB using 100 MB RAM
 - Read 100 MB of data into memory
 - Sort using conventional method (e.g. quicksort)
 - Write sorted 100MB to temp file
 - Repeat until all data in sorted chunks (900/100 = 9 total)
- Read first 10 MB of each sorted chuck, merge into remaining 10MB
 - writing and reading as necessary
 - Single merge pass instead of $\log n$
 - Additional pass helpful if data much larger than memory
- Parallelism and better hardware can improve performance
- Distribution sorts (similar to bucket sort) are also used
Last Slide on Sorting

• Simple $O(n^2)$ sorts can be fastest for small n
 – Selection sort, Insertion sort (latter linear for mostly-sorted)
 – Good for “below a cut-off” to help divide-and-conquer sorts

• $O(n \log n)$ sorts
 – Heap sort, in-place but not stable nor parallelizable
 – Merge sort, not in place but stable and works as external sort
 – Quick sort, in place but not stable and $O(n^2)$ in worst-case
 • Often fastest, but depends on costs of comparisons/copies

• $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons

• Non-comparison sorts
 – Bucket sort good for small number of possible key values
 – Radix sort uses fewer buckets and more phases

• Best way to sort? It depends!