CSE373: Data Structures & Algorithms
Lecture 18: Shortest Paths

Linda Shapiro
Spring 2016
Announcements

• Shake ‘n Bake due May 18
Graph Traversals

For an arbitrary graph and a starting node \(v \), find all nodes reachable from \(v \) (i.e., there exists a path from \(v \))

Basic idea:
- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Important Graph traversal algorithms:
- “Depth-first search” “DFS”: recursively explore one part before going back to the other parts not yet explored
- “Breadth-first search” “BFS”: explore areas closer to the start node first
Dijkstra’s Algorithm

• Named after its inventor Edsger Dijkstra (1930-2002)
 – Truly one of the “founders” of computer science; this is just one of his many contributions
 – Many people have a favorite Dijkstra story, even if they never met him

Computer science is no more about computers than astronomy is about telescopes.

(Edsger Dijkstra)
Dijkstra’s Algorithm

• Goal: Find the shortest path from a given start node to all other nodes in terms of the weights on the edges.

• The idea: reminiscent of BFS, but adapted to handle weights
 – Grow the set of nodes whose shortest distance has been computed
 – Nodes not in the set will have a “best distance so far”
 – A priority queue will turn out to be useful for efficiency

• An example of a greedy algorithm
 – A series of steps
 – At each one the locally optimal choice is made
Dijkstra’s Algorithm: Idea

- Initially, start node has cost 0 and all other nodes have cost ∞

- At each step:
 - Pick closest unknown vertex v
 - Add it to the “cloud” of known vertices
 - Update distances for nodes with edges from v

- That’s it!
The Algorithm

1. For each node \(v \), set \(v.\text{cost} = \infty \) and \(v.\text{known} = \text{false} \)
2. Set \(\text{source.cost} = 0 \) // start node
3. While there are unknown nodes in the graph
 a) Select the unknown node \(v \) with lowest cost
 b) Mark \(v \) as known
 c) For each edge \((v,u)\) with weight \(w \),

\[
\begin{align*}
 c_1 &= v.\text{cost} + w \quad \text{// cost of best path through } v \text{ to } u \\
 c_2 &= u.\text{cost} \quad \text{// cost of best path to } u \text{ previously known}
\end{align*}
\]

if \(c_1 < c_2 \)\{ // if the path through \(v \) is better
 u.\text{cost} = c_1
 u.\text{path} = v \quad \text{// for computing actual paths}
\}
Example #1

Order Added to Known Set:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A
Example #1

Order Added to Known Set:

A, C
Example #1

Order Added to Known Set:

A, C, B

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>≤ 4</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>≤ 12</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>≤ 4</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spring 2016 CSE373: Data Structures & Algorithms 11
Example #1

Order Added to Known Set:
A, C, B, D
Example #1

Order Added to Known Set:
A, C, B, D, F

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤12</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>≤7</td>
<td>F</td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:

A, C, B, D, F, H

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤ 12</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤ 8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:
A, C, B, D, F, H, G

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Example #1

Order Added to Known Set:
A, C, B, D, F, H, G, E

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Features

- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers

- While a vertex is still not known, another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important
Interpreting the Results

- Now that we’re done, how do we get the path from, say, A to E?

Order Added to Known Set:

A, C, B, D, F, H, G, E

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>11</td>
<td>G</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>8</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>Y</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>
Stopping Short

• How would this have worked differently if we were only interested in:
 – The path from A to G?
 – The path from A to E?

Order Added to Known Set:
A, C, B, D, F, H, G, E
Example #2

Order Added to Known Set:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

A

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>≤ 2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>≤ 1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:

A, D

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>≤ 2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>≤ 2</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>≤ 7</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>≤6</td>
<td>D</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>≤2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C, E
Example #2

![Graph](image)

Order Added to Known Set:

A, D, C, E, B

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤ 4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤ 6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C, E, B, F

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>≤ 6</td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>
Example #2

Order Added to Known Set:
A, D, C, E, B, F, G

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>2</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>6</td>
<td>D</td>
</tr>
</tbody>
</table>
Example #3

How will the best-cost-so-far for Y proceed?

Is this expensive?
Example #3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive?
Example #3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, …

Is this expensive? No, each edge is processed only once
A Greedy Algorithm

• Dijkstra’s algorithm
 – For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges

• An example of a greedy algorithm:
 – At each step, always does what seems best at that step
 • A locally optimal step, not necessarily globally optimal
 – Once a vertex is known, it is not revisited
 • Turns out Dijkstra’s algorithm IS globally optimal
Where are We?

• Had a problem: Compute shortest paths in a weighted graph with no negative weights

• Learned an algorithm: Dijkstra’s algorithm

• What should we do after learning an algorithm?
 – Prove it is correct
 • Not obvious!
 • We will sketch the key ideas
 – Analyze its efficiency
 • Will do better by using a data structure we learned earlier!
Correctness: Intuition

Rough intuition:

All the “known” vertices have the correct shortest path
 – True initially: shortest path to start node has cost 0
 – If it stays true every time we mark a node “known”, then by induction this holds and eventually everything is “known”

Key fact we need: When we mark a vertex “known” we won’t discover a shorter path later!
 – This holds only because Dijkstra’s algorithm picks the node with the next shortest path-so-far
 – The proof is by contradiction…
Correctness: The Cloud (Rough Sketch)

Suppose \(v \) is the next node to be marked known (“added to the cloud”)

- The best-known path to \(v \) must have only nodes “in the cloud”
 - Else we would have picked a node closer to the cloud than \(v \)
- Suppose the actual shortest path to \(v \) is different
 - It won’t use only cloud nodes, or we would know about it
 - So it must use non-cloud nodes. Let \(w \) be the first non-cloud node on this path. The part of the path up to \(w \) is already known and must be shorter than the best-known path to \(v \). So \(v \) would not have been picked. Contradiction.
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
– Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0

    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true

        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
- Notice each edge is processed only once

```plaintext
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

$O(|V|)$
Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 while(not all nodes are known) {
 b = find unknown node with smallest cost
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost)
 a.cost = b.cost + weight((b,a))
 a.path = b
 }
}
Efficiency, first approach

Use pseudocode to determine asymptotic run-time

– Notice each edge is processed only once

```plaintext
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```

Time complexity:
- **O(|V|)**
- **O(|V|^2)**
- **O(|E|)**
Efficiency, first approach

Use pseudocode to determine asymptotic run-time
- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
    for each node: x.cost=infinity, x.known=false
    start.cost = 0
    while(not all nodes are known) {
        b = find unknown node with smallest cost
        b.known = true
        for each edge (b,a) in G
            if(!a.known)
                if(b.cost + weight((b,a)) < a.cost){
                    a.cost = b.cost + weight((b,a))
                    a.path = b
                }
    }
}
```
Improving asymptotic running time

• So far: $O(|V|^2)$

• We had a similar “problem” with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 – We solved it with a queue of zero-degree nodes
 – But here we need the lowest-cost node and costs can change as we process edges

• Solution?
Improving (?) asymptotic running time

• So far: $O(|V|^2)$

• We had a similar “problem” with topological sort being $O(|V|^2)$ due to each iteration looking for the node to process next
 – We solved it with a queue of zero-degree nodes
 – But here we need the lowest-cost node and costs can change as we process edges

• Solution?
 – A priority queue holding all unknown nodes, sorted by cost
 – But must support \texttt{decreaseKey} operation
 • Must maintain a reference from each node to its current position in the priority queue
 • Conceptually simple, but takes some coding
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost) {
 decreaseKey(a, "new cost - old cost")
 a.path = b
 }
 }
}
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=\text{infinity}, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a, "new cost - old cost")
 a.path = b
 }
 }
}
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a, “new cost – old cost”)
 a.path = b
 }
 }
}

\(O(|V|)\)

\(O(|V|\log|V|)\)
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=\infty, x.known=false
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,"new cost - old cost")
 a.path = b
 }
 }
}
Efficiency, second approach

Use pseudocode to determine asymptotic run-time

dijkstra(Graph G, Node start) {
 for each node: x.cost=\text{infinity}, x.known=\text{false}
 start.cost = 0
 build-heap with all nodes
 while(heap is not empty) {
 b = deleteMin()
 b.known = true
 for each edge (b,a) in G
 if(!a.known)
 if(b.cost + weight((b,a)) < a.cost){
 decreaseKey(a,"new cost - old cost")
 a.path = b
 }
 }
}

\[O(|V|) \]

\[O(|V|\log|V|) \]

\[O(|E|\log|V|) \]

\[O(|V|\log|V|+|E|\log|V|) \]
Dense vs. sparse again

- First approach: $O(|V|^2)$
- Second approach: $O(|V|\log|V|+|E|\log|V|)$
- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if $|E| > |V|$, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for “normal graphs”, we might call `decreaseKey` rarely (or not percolate far), making $|E|\log|V|$ more like $|E|$
Looking Forward: Spanning Trees

- A simple problem: Given a connected undirected graph $G=(V,E)$, find a minimal subset of edges such that G is still connected
 - A graph $G_2=(V,E_2)$ such that G_2 is connected and removing any edge from E_2 makes G_2 disconnected
Practice Problem for Dijkstra

Start node: A

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Practice Problem for Dijkstra

Start node: A

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>B</td>
<td>≤ 2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>≤ 3</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>≤ 7</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>??</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>??</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The path \(<A, B, E>\) is not shorter than the path \(<A, E>\).

So E is not updated from B.
Practice Problem for Dijkstra

Start node: A

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>≤4</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>≤7</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>F</td>
<td>≤9</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>??</td>
<td></td>
</tr>
</tbody>
</table>
Practice Problem for Dijkstra

Start node: A

Can get to E through D with a shorter path.

Can also now get to G.
Practice Problem for Dijkstra

Start node: A

Can get to G through E with a shorter path.

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>6</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>≤9</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>≤8</td>
<td>E</td>
</tr>
</tbody>
</table>

Can get to G through E with a shorter path.
Practice Problem for Dijkstra

Start node: A

G is a sink, so nothing can get updated.
Practice Problem for Dijkstra

Start node: A

F does not lead to a shorter path to G.

DONE.