CSE 373: Data Structures & Algorithms
Lecture 17: Topological Sort / Graph Traversals

Linda Shapiro
Spring 2016
Announcements
New Example

Is the relationship directed or undirected?
Is the graph connected?
How many components?
Can we think of these as equivalence classes?
Adjacency Matrix

- Assign each node a number from 0 to $|V| - 1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v]$ being **true** means there is an edge from u to v

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
```
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits

- Best for sparse or dense graphs?
 - Best for dense graphs
Adjacency Matrix Properties

• How will the adjacency matrix look for an *undirected graph*?
 – Undirected will be symmetric around the diagonal
 \[
 \begin{array}{cccc}
 1 & 2 & 3 & 4 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 1 & 0 & 1 & 0 \\
 \end{array}
 \]

• How can we adapt the representation for *weighted graphs*?
 – Instead of a Boolean, store a number in each cell
 – Need some value to represent ‘not an edge’
 • In some situations, 0 or -1 works
Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)

![Diagram of Adjacency List]

```
A(0) → B(1) → C(2) → D(3)
```

```
0 1 2 3
1 1 3 / 0 /
0 / 3 1 /
/ / 1 /
```
Adjacency List Properties

• Running time to:
 – Get all of a vertex’s out-edges: \(O(d) \) where \(d \) is out-degree of vertex
 – Get all of a vertex’s in-edges: \(O(|E|) \) (but could keep a second adjacency list for this!)
 – Decide if some edge exists: \(O(d) \) where \(d \) is out-degree of source
 – Insert an edge: \(O(1) \) (unless you need to check if it’s there)
 – Delete an edge: \(O(d) \) where \(d \) is out-degree of source

• Space requirements: • Good for sparse graphs
 – \(O(|V|+|E|) \)
Algorithms

• **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors

• **Shortest paths**: Find the shortest or lowest-cost path from x to y
 – Related: Determine if there even is such a path
Topological Sort

Problem: Given a DAG $G = (V, E)$, output all vertices in an order such that no vertex appears before another vertex that has an edge to it.

One example output:
126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415
Questions and comments

• Why do we perform topological sorts only on DAGs?
 – Because a cycle means there is no correct answer

• Is there always a unique answer?
 – No, there can be 1 or more answers; depends on the graph

• Do some DAGs have exactly 1 answer?
 – Yes, including all lists

• Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it
Uses

• Figuring out how to graduate

• Computing an order in which to recompute cells in a spreadsheet

• Determining an order to compile files using a Makefile

• In general, taking a dependency graph and finding an order of execution

• Figuring out how CSE grad students make espresso
A First Algorithm for Topological Sort

1. Label (“mark”) each vertex with its in-degree
 – Think “write in a field in the vertex”
 – Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with in-degree of 0
 b) Output v and mark it removed
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),
 decrement the in-degree of u
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?

In-degree: 0 0 2 1 1 1 1 1 1 3
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Output: 126

Removed? x
In-degree: 0 0 2 1 1 1 1 1 1 1 1 3 1

Spring 2016 CSE373: Data Structures & Algorithms
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output: 126 142
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
0

Output: 126 142 143
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 2
 0

Output: 126
 142
 143
 374
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?: x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output: 126 142 143 374 373
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

Output: 126 142 143 374 373 410 413 415 417 XYZ

Spring 2016 CSE373: Data Structures & Algorithms
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?: x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 0 2
 0 0 0 1

Output:
126
142
143
374
373
417
410
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?: x x x x x x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 1 1 3 1 0 0 0 0 0 0 2 0 1 0
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3

Output: 126 142 143 374 373 410 413 415 417 XYZ
Example

Output:

126
142
143
374
373
410
413
415
417
XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 1 3

Spring 2016

CSE373: Data Structures & Algorithms
Notice

- Needed a vertex with in-degree 0 to start
 - Will always have at least 1 because no cycles
- Ties among vertices with in-degrees of 0 can be broken arbitrarily
 - Can be more than one correct answer, by definition, depending on the graph
Running time?

\begin{verbatim}
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++){
 v = findNewVertexOfDegreeZero();
 put v next in output
 for each w adjacent to v
 w.indegree--;}
\end{verbatim}

• What is the worst-case running time?
 – Initialization $O(|V|+|E|)$ (assuming adjacency list)
 – Sum of all find-new-vertex $O(|V|^2)$ (because each $O(|V|)$)
 – Sum of all decrements $O(|E|)$ (assuming adjacency list)
 – So total is $O(|V|^2)$ – not good for a sparse graph!
Doing better

The trick is to avoid searching for a zero-degree node every time!
 – Keep the “pending” zero-degree nodes in a list, stack, queue, bag, table, or something
 – Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that $(v,u) \in E$), decrement the in-degree of u, if new degree is 0, enqueue it
What is the worst-case running time?

- Initialization: $O(|V| + |E|)$ (assuming adjacency list)
- Sum of all enqueues and dequeues: $O(|V|)$
- Sum of all decrements: $O(|E|)$ (assuming adjacency list)
- So total is $O(|E| + |V|)$ – much better for sparse graph!
Small Example

```
Nodes/Indegree
\[
\begin{array}{cccccc}
  a & b & c & d & e \\
  0 & 0 & 2 & 1 & 1 \\
  -- & 0 & 1 & 1 & 1 \\
  -- & -- & 0 & 1 & 1 \\
  -- & -- & -- & 0 & 1 \\
  -- & -- & -- & -- & 0 \\
\end{array}
\]
```

Queue
```
\[
\begin{array}{cccccc}
  a & b \\
  b \\
  c \\
  d \\
  e \\
\end{array}
\]
```

Output
```
\[
\begin{array}{cccccc}
  a \\
  b \\
  c \\
  d \\
  e \\
\end{array}
\]
```
Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable from v (i.e., there exists a path from v)

- Possibly “do something” for each node
- Examples: print to output, set a field, etc.

• Subsumed problem: Is an undirected graph connected?
• Related but different problem: Is a directed graph strongly connected?
 - Need cycles back to starting node

Basic idea:

- Keep following nodes
- But “mark” nodes after visiting them, so the traversal terminates and processes each reachable node exactly once
Abstract Idea

traverseGraph(Node start) {
 Set pending = emptySet()
 pending.add(start)
 mark start as visited
 while(pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if(u is not marked) {
 mark u
 pending.add(u)
 }
 }
}
Running Time and Options

- Assuming **add** and **remove** are $O(1)$, entire traversal is $O(|E|)$
 - Use an adjacency list representation

- The order we traverse depends entirely on **add** and **remove**
 - Popular choice: **a stack** “depth-first graph search” “DFS”
 - Popular choice: **a queue** “breadth-first graph search” “BFS”

- DFS and BFS are “big ideas” in computer science
 - Depth: recursively explore one part before going back to the other parts not yet explored
 - Breadth: explore areas closer to the start node first
Example: Depth First Search (recursive)

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS(Node start) {
    mark and process start
    for each node u adjacent to start
        if u is not marked
            DFS(u)
}
```

- A B D E C F G H
- Exactly what we called a “pre-order traversal” for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once
Example: Another Depth First Search (with stack)

- A tree is a graph and DFS and BFS are particularly easy to “see”

```
DFS2(Node start) {
    initialize stack s and push start
    mark start as visited
    while(s is not empty) {
        next = s.pop() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and push onto s
    }
}
```

- A different but perfectly fine traversal, but is this DFS?
- DEPENDS ON THE ORDER YOU PUSH CHILDREN INTO STACK

A C F H G B E D
Search Tree Example:
Fragment of 8-Puzzle Problem Space
Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to “see”

```java
BFS(Node start) {
    initialize queue q and enqueue start
    mark start as visited
    while(q is not empty) {
        next = q.dequeue() // and “process”
        for each node u adjacent to next
            if(u is not marked)
                mark u and enqueue onto q
    }
}
```

- A “level-order” traversal

A B C D E F G H
Search Tree Example: Fragment of 8-Puzzle Problem Space
Comparison when used for AI Search

• Breadth-first always finds a solution (a path) if one exists and there is enough memory.

• But depth-first can use less space in finding a path.

• A third approach:
 – Iterative deepening (IDFS):
 • Try DFS but disallow recursion more than k levels deep
 • If that fails, increment k and start the entire search over
 – Like BFS, finds shortest paths. Like DFS, less space.
Saving the Path

• Our graph traversals can answer the reachability question:
 – “Is there a path from node x to node y?”

• But what if we want to actually output the path?
 – Like getting driving directions rather than just knowing it’s possible to get there!

• How to do it:
 – Instead of just “marking” a node, store the previous node along the path (when processing u causes us to add v to the search, set v.path field to be u)
 – When you reach the goal, follow path fields back to where you started (and then reverse the answer)
 – If just wanted path length, could put the integer distance at each node instead
Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique
Harder Problem: Add weights or costs to the graphs.

Find minimal cost paths from a vertex \(v \) to all other vertices.

- Driving directions
- Cheap flight itineraries
- Network routing
- Critical paths in project management
Not as easy as BFS

Why BFS won't work: Shortest path may not have the fewest edges
- Annoying when this happens with costs of flights

We will assume there are no negative weights
- *Problem* is *ill-defined* if there are negative-cost *cycles*
- *Today’s algorithm* is *wrong* if *edges* can be negative
 - There are other, slower (but not terrible) algorithms
Dijkstra’s Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the “founders” of computer science; this is just one of his many contributions
 - Many people have a favorite Dijkstra story, even if they never met him

Computer science is no more about computers than astronomy is about telescopes.

(Edsger Dijkstra)