CSE373: Data Structures & Algorithms
Lecture 14: Hash Collisions

Linda Shapiro
Spring 2016
Announcements

• Friday: Review List and go over answers to Practice Problems
Hash Tables: Review

- Aim for constant-time (i.e., $O(1)$) find, insert, and delete
 - “On average” under some reasonable assumptions

- A hash table is an array of some fixed size
 - But growable as we’ll see
Collision resolution

Collision:
When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution
– Ideas?
Separate Chaining

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42 with mod hashing and `TableSize = 10`

<table>
<thead>
<tr>
<th>0</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Separate Chaining

Chaining:

All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42 with mod hashing
and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42 with mod hashing
and TableSize = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and \text{TableSize} = 10
Separate Chaining

Chaining:
All keys that map to the same table location are kept in a list (a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10
Thoughts on chaining

• Worst-case time for `find`?
 – Linear
 – But only with really bad luck or bad hash function
 – So not worth avoiding (e.g., with balanced trees at each bucket)

• Beyond asymptotic complexity, some “data-structure engineering” may be warranted
 – Linked list vs. array vs. tree
 – Move-to-front upon access
 – Maybe leave room for 1 element (or 2?) in the table itself, to optimize constant factors for the common case
 • A time-space trade-off…
Time vs. space (constant factors only here)
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is ___
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \quad \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ

ie. The average list has length λ
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \leftarrow \text{number of elements}$$

Under chaining, the average number of elements per bucket is λ

ie. The average list has length λ

So if some inserts are followed by random finds, then on average:

- Each unsuccessful `find` compares against ____ items
More rigorous chaining analysis

Definition: The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}} \quad \text{← number of elements}$$

Under chaining, the average number of elements per bucket is λ.

ie. The average list has length $\lambda

So if some inserts are followed by random finds, then on average:

- Each unsuccessful `find` compares against λ items
- Each successful `find` compares against _____ items
More rigorous chaining analysis

Definition: The load factor, \(\lambda \), of a hash table is

\[
\lambda = \frac{N}{\text{TableSize}} \quad \leftarrow \text{number of elements}
\]

Under chaining, the average number of elements per bucket is \(\lambda \)

ie. *The average list has length \(\lambda \)*

So if some inserts are followed by *random* finds, then on average:
- Each unsuccessful *find* compares against \(\lambda \) items
- Each successful *find* compares against \(\lambda / 2 \) items

So we like to keep \(\lambda \) fairly low (e.g., 1 or 1.5 or 2) for chaining
Alternative: No lists; Use empty space in the table

• Another simple idea: If $h(\text{key})$ is already full,
 – try $(h(\text{key}) + 1) \% \text{TableSize}$. If full,
 – try $(h(\text{key}) + 2) \% \text{TableSize}$. If full,
 – try $(h(\text{key}) + 3) \% \text{TableSize}$. If full…

• Example: insert 38, 19, 8, 109, 10

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

• Another simple idea: If $h(\text{key})$ is already full,
 – try $(h(\text{key}) + 1) \% \text{TableSize}$. If full,
 – try $(h(\text{key}) + 2) \% \text{TableSize}$. If full,
 – try $(h(\text{key}) + 3) \% \text{TableSize}$. If full...

• Example: insert 38, 19, 8, 109, 10

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

- Another simple idea: If \(h(key) \) is already full,
 - try \((h(key) + 1) \mod \text{TableSize}\). If full,
 - try \((h(key) + 2) \mod \text{TableSize}\). If full,
 - try \((h(key) + 3) \mod \text{TableSize}\). If full...

- Example: insert 38, 19, 8, 109, 10

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

- Another simple idea: If $h(\text{key})$ is already full,
 - try $(h(\text{key}) + 1) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 2) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 3) \mod \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>109</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>38</td>
<td>19</td>
</tr>
</tbody>
</table>
Alternative: Use empty space in the table

• Another simple idea: If $h(\text{key})$ is already full,
 – try $(h(\text{key}) + 1) \mod \text{TableSize}$. If full,
 – try $(h(\text{key}) + 2) \mod \text{TableSize}$. If full,
 – try $(h(\text{key}) + 3) \mod \text{TableSize}$. If full...

• Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th>0</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>109</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>/</td>
</tr>
<tr>
<td>4</td>
<td>/</td>
</tr>
<tr>
<td>5</td>
<td>/</td>
</tr>
<tr>
<td>6</td>
<td>/</td>
</tr>
<tr>
<td>7</td>
<td>/</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
</tr>
</tbody>
</table>
Probing hash tables

Trying the next spot is called **probing** (also called **open addressing**)
- We just did **linear probing**
 - \(i^{\text{th}} \text{ probe was } (h(\text{key}) + i) \mod \text{TableSize} \)
- In general have some probe function \(f \) and use \(h(\text{key}) + f(i) \mod \text{TableSize} \)

Open addressing does poorly with high load factor \(\lambda \)
- So want **larger tables**
- Too many probes means no more \(O(1) \)
Other operations

insert finds an open table position using a probe function

What about **find**?
- Must use **same probe** function to “retrace the trail” for the data
- Unsuccessful search when reach empty position

What about **delete**?
- **Must** use “lazy” deletion. Why?
 - Marker indicates “no data here, but don’t stop probing”
- Note: **delete** with chaining is plain-old list-remove
(Primary) Clustering

It turns out linear probing is a *bad idea*, even though the probe function is quick to compute (which is a good thing)

Tends to produce *clusters*, which lead to long probing sequences

- Called **primary clustering**
- Saw this starting in our example

[R. Sedgewick]
Analysis of Linear Probing

• Trivial fact: For any $\lambda < 1$, linear probing will find an empty slot
 – It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:
 Average # of probes given λ (in the limit as $\text{TableSize} \rightarrow \infty$)
 – Unsuccessful search:
 \[\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right) \]
 – Successful search:
 \[\frac{1}{2} \left(1 + \frac{1}{1-\lambda} \right) \]

• This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)
In a chart

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes “large table” but point remains)

- By comparison, chaining performance is linear in λ and has no trouble with $\lambda > 1$
Quadratic probing

- We can avoid primary clustering by changing the probe function
 \[(h(key) + f(i)) \mod \text{TableSize}\]

- A common technique is quadratic probing:
 \[f(i) = i^2\]
 - So probe sequence is:
 - 0th probe: \(h(key) \mod \text{TableSize}\)
 - 1st probe: \((h(key) + 1) \mod \text{TableSize}\)
 - 2nd probe: \((h(key) + 4) \mod \text{TableSize}\)
 - 3rd probe: \((h(key) + 9) \mod \text{TableSize}\)
 - ...
 - \(i^{th}\) probe: \((h(key) + i^2) \mod \text{TableSize}\)

- Intuition: Probes quickly “leave the neighborhood”
Quadratic Probing Example

Table Size = 10
Insert:
89
18
49
58
79
Quadratic Probing Example

TableSize=10
Insert:
89
18
49
58
79
Quadratic Probing Example

Table Size = 10

Insert:
89
18
49
58
79
Quadratic Probing Example

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>
```

- **Table Size:** 10
- **Insert:**
 - 89
 - 18
 - 49
 - 58
 - 79
TableSize=10
Insert:
89
18
49
58
79

<table>
<thead>
<tr>
<th>0</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
</tr>
</tbody>
</table>
Quadratic Probing Example

Here is an example of Quadratic Probing with a table size of 10:

Table Size = 10

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
</tr>
</tbody>
</table>

Insert:

- 89
- 18
- 49
- 58
- 79
Another Quadratic Probing Example

Table Size = 7

Insert:
76 \hspace{1cm} (76 \% 7 = 6)
40 \hspace{1cm} (40 \% 7 = 5)
48 \hspace{1cm} (48 \% 7 = 6)
5 \hspace{1cm} (5 \% 7 = 5)
55 \hspace{1cm} (55 \% 7 = 6)
47 \hspace{1cm} (47 \% 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:
76 \hspace{1em} (76 \% 7 = 6)
40 \hspace{1em} (40 \% 7 = 5)
48 \hspace{1em} (48 \% 7 = 6)
5 \hspace{1em} (5 \% 7 = 5)
55 \hspace{1em} (55 \% 7 = 6)
47 \hspace{1em} (47 \% 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:
76 \hspace{1cm} (76 \% 7 = 6)
40 \hspace{1cm} (40 \% 7 = 5)
48 \hspace{1cm} (48 \% 7 = 6)
5 \hspace{1cm} (5 \% 7 = 5)
55 \hspace{1cm} (55 \% 7 = 6)
47 \hspace{1cm} (47 \% 7 = 5)
Another Quadratic Probing Example

TableSize = 7

<table>
<thead>
<tr>
<th>Table Entry</th>
<th>Probed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

Insert:
- 76 \((76 \% 7 = 6) \)
- 40 \((40 \% 7 = 5) \)
- 48 \((48 \% 7 = 6) \)
- 5 \((5 \% 7 = 5) \)
- 55 \((55 \% 7 = 6) \)
- 47 \((47 \% 7 = 5) \)
Another Quadratic Probing Example

TableSize = 7

<table>
<thead>
<tr>
<th>Insert</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>(76 % 7 = 6)</td>
</tr>
<tr>
<td>40</td>
<td>(40 % 7 = 5)</td>
</tr>
<tr>
<td>48</td>
<td>(48 % 7 = 6)</td>
</tr>
<tr>
<td>5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>55</td>
<td>(55 % 7 = 6)</td>
</tr>
<tr>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>
Another Quadratic Probing Example

TableSize = 7

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insert:
- 76 \ (76 \% 7 = 6)
- 40 \ (40 \% 7 = 5)
- 48 \ (48 \% 7 = 6)
- 5 \ (5 \% 7 = 5)
- 55 \ (55 \% 7 = 6)
- 47 \ (47 \% 7 = 5)
Another Quadratic Probing Example

TableSize = 7

Insert:
- 76 \((76 \% 7 = 6)\)
- 40 \((40 \% 7 = 5)\)
- 48 \((48 \% 7 = 6)\)
- 5 \((5 \% 7 = 5)\)
- 55 \((55 \% 7 = 6)\)
- 47 \((47 \% 7 = 5)\)

Doh!: For all \(n\), \(((n\times n) + 5) \% 7\) is 0, 2, 5, or 6
- No where to put the 47!
From Bad News to Good News

- **Bad news:**
 - Quadratic probing can cycle through the same full indices, never terminating despite table not being full

- **Good news:**
 - If `TableSize` is *prime* and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most $\frac{TableSize}{2}$ probes
 - So: If you keep $\lambda < \frac{1}{2}$ and `TableSize` is *prime*, no need to detect cycles
Clustering reconsidered

- Quadratic probing does not suffer from primary clustering: no problem with keys initially hashing to the same neighborhood

- But it’s no help if keys initially hash to the same index
 - Called secondary clustering

- Can avoid secondary clustering with a probe function that depends on the key: double hashing…
Double hashing

Idea:

– Given two good hash functions h and g, it is very unlikely that for some key, $h(\text{key}) == g(\text{key})$
– So make the probe function $f(i) = i \times g(\text{key})$

Probe sequence:

• 0th probe: $h(\text{key}) \% \text{TableSize}$
• 1st probe: $(h(\text{key}) + g(\text{key})) \% \text{TableSize}$
• 2nd probe: $(h(\text{key}) + 2 \times g(\text{key})) \% \text{TableSize}$
• 3rd probe: $(h(\text{key}) + 3 \times g(\text{key})) \% \text{TableSize}$
• ...
• ith probe: $(h(\text{key}) + i \times g(\text{key})) \% \text{TableSize}$

Detail: Make sure $g(\text{key})$ cannot be 0
Double-hashing analysis

• **Intuition:** Because each probe is “jumping” by $g(key)$ each time, we “leave the neighborhood” and “go different places from other initial collisions”

• But we could still have a problem like in quadratic probing where we are not “safe” (infinite loop despite room in table)
 – It is known that this cannot happen in at least one case:
 • $h(key) = key \mod p$
 • $g(key) = q - (key \mod q)$
 • $2 < q < p$
 • p and q are prime
Rehashing

• As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything

• With chaining, we get to decide what “too full” means
 – Keep load factor reasonable (e.g., < 1)?
 – Consider average or max size of non-empty chains?

• For probing, half-full is a good rule of thumb

• New table size
 – Twice-as-big is a good idea, except that won’t be prime!
 – So go *about* twice-as-big
 – Can have a list of prime numbers in your code since you won’t grow more than 20-30 times
Summary

• Hashing gives us approximately $O(1)$ behavior for both insert and find.
• Collisions are what ruin it.
• There are several different collision strategies.
 – **Chaining** just uses linked lists pointed to by the hash table bins.
 – **Probing** uses various methods for computing the next index to try if the first one is full.
 – **Rehashing** makes a new, bigger table.
 – If the table is kept reasonably empty (small load factor), and the hash function works well, we will get the kind of behavior we want.