CSE373: Data Structures & Algorithms
Lecture 11: Implementing Union-Find

Linda Shapiro
Winter 2015
Announcements

• Homework 3 due in Friday
• Help sessions: Do we need them?
The plan

Last lecture:

• Disjoint sets
• The union-find ADT for disjoint sets

Today’s lecture:

• Basic implementation of the union-find ADT with “up trees”
• Optimizations that make the implementation much faster
Union-Find ADT

- Given an unchanging set S, **create** an initial partition of a set
 - Typically each item in its own subset: $\{a\}$, $\{b\}$, $\{c\}$, ...
 - Give each subset a “name” by choosing a *representative element*

- Operation **find** takes an element of S and returns the representative element of the subset it is in

- Operation **union** takes two subsets and (permanently) makes one larger subset
 - A different partition with one fewer set
 - Affects result of subsequent **find** operations
 - Choice of representative element up to implementation
Implementation – our goal

• Start with an initial partition of n subsets
 – Often 1-element sets, e.g., \{1\}, \{2\}, \{3\}, ..., \{n\}

• May have \textit{any number of} \texttt{find} operations

• May have \textit{up to} $n-1$ \texttt{union} operations in any order
 – After $n-1$ \texttt{union} operations, every \texttt{find} returns same \texttt{single} set
Up-tree data structure

- Tree with:
 - No limit on branching factor
 - References from children to parent

- Start with forest of 1-node trees

 1 2 3 4 5 6 7

- Possible forest after several unions:
 - Will use roots for set names

 1 3 7
 2
 5
 4
 6
Find

\textbf{find}(x):

– Assume we have $O(1)$ access to each node
 • Will use an array where index i holds node i
– Start at x and follow parent pointers to root
– Return the root

\textbf{find}(6) = 7
Union

union(x, y):
 – Assume x and y are roots
 • Else find the roots of their trees
 – Assume distinct trees (else do nothing)
 – Change root of one to have parent be the root of the other
 • Notice no limit on branching factor

union(1,7)
Simple implementation

- If set elements are contiguous numbers (e.g., 1, 2, …, n), use an array of length \(n \) called \(\text{up} \)
 - Starting at index 1 on slides
 - Put in array index of parent, with 0 (or -1, etc.) for a root

- Example:

- Example:

- If set elements are not contiguous numbers, could have a separate dictionary to map elements (keys) to numbers (values)
Implement operations

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {
 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 up[y] = x;
}

- Worst-case run-time for union? \(O(1)\)
- Worst-case run-time for find? \(O(n)\)
- Worst-case run-time for \(m\) finds and \(n-1\) unions? \(O(m*n)\)
Two key optimizations

1. Improve \texttt{union} so it stays \(O(1)\) but makes \texttt{find} \(O(\log n)\)
 - So \(m\) finds and \(n-1\) unions is \(O(m \log n + n)\)
 - \textit{Union-by-size}: connect smaller tree to larger tree

2. Improve \texttt{find} so it becomes even faster
 - Make \(m\) finds and \(n-1\) unions \textit{almost} \(O(m + n)\)
 - \textit{Path-compression}: connect directly to root during finds
The bad case to avoid

\[\text{union}(2,1) \]
\[\text{union}(3,2) \]
\[\vdots \]
\[\text{union}(n, n-1) \]

\[\text{find}(1) = n \text{ steps!!} \]
Union-by-size

Union-by-size:

- Always point the *smaller* (total # of nodes) tree to the root of the larger tree
Union-by-size

Union-by-size:
- Always point the smaller (total # of nodes) tree to the root of the larger tree

union(1,7)
Array implementation

Keep the size (number of nodes in a second array)
- Or have one array of objects with two fields
Nifty trick

Actually we do not need a second array…

- Instead of storing 0 for a root, store negation of size
- So up value < 0 means a root
The Bad case? Now a Great case...

1 2 3 n union(2,1)

2 3 ... n union(3,2)

1 union(n,n-1)

2 ... n

1 3

2 union(1)

1 3 ... n

find(1) constant here
General analysis

• Showing one worst-case example is now good is not a proof that the worst-case has improved

• So let’s prove:
 – union is still $O(1)$ – this is “obvious”
 – find is now $O(\log n)$

• Claim: If we use union-by-size, an up-tree of height h has at least 2^h nodes
 – Proof by induction on h…
Exponential number of nodes

\(P(h) = \) With union-by-size, up-tree of height \(h \) has at least \(2^h \) nodes

Proof by induction on \(h \)...

- Base case: \(h = 0 \): The up-tree has 1 node and \(2^0 = 1 \)
- Inductive case: Assume \(P(h) \) and show \(P(h+1) \)
 - A height \(h+1 \) tree \(T \) has at least one height \(h \) child \(T_1 \)
 - \(T_1 \) has at least \(2^h \) nodes by induction
 - And \(T \) has \emph{at least} as many nodes not in \(T_1 \) than in \(T_1 \)
 - Else union-by-size would have had \(T \) point to \(T_1 \), not \(T_1 \) point to \(T \) (!!)
 - So total number of nodes is \emph{at least} \(2^h + 2^h = 2^{h+1} \)
The key idea

Intuition behind the proof: No one child can have more than half the nodes

So, as usual, if number of nodes is exponential in height, then height is logarithmic in number of nodes

So \texttt{find} is $O(\log n)$
The new worst case

n/2 Unions-by-size

n/4 Unions-by-size
The new worst case (continued)

After \(\frac{n}{2} + \frac{n}{4} + \ldots + 1\) Unions-by-size:

Height grows by 1 a total of \(\log n\) times
What about union-by-height

We could store the height of each root rather than size

- Still guarantees logarithmic worst-case find
 - Proof left as an exercise if interested

- But does not work well with our next optimization
 - Maintaining height becomes inefficient, but maintaining size still easy
Two key optimizations

1. Improve \texttt{union} so it stays $O(1)$ but makes \texttt{find} $O(\log n)$
 - So m finds and $n-1$ unions is $O(m \log n + n)$
 - \textit{Union-by-size}: connect smaller tree to larger tree

2. Improve \texttt{find} so it becomes even faster
 - Make m finds and $n-1$ unions \textit{almost} $O(m + n)$
 - \textit{Path-compression}: connect directly to root during finds
Path compression

• Simple idea: As part of a find, change each encountered node’s parent to point directly to root
 – Faster future finds for everything on the path (and their descendants)
Pseudocode

// performs path compression
int find(i) {
 // find root
 int r = i
 while(up[r] > 0)
 r = up[r]

 // compress path
 if i==r
 return r;
 int old_parent = up[i]
 while(old_parent != r) {
 up[i] = r
 i = old_parent;
 old_parent = up[i]
 }
 return r;
}
So, how fast is it?

A single worst-case `find` could be $O(\log n)$
- But only if we did a lot of worst-case unions beforehand
- And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than $O(\log n)$
- total for m finds and $n-1$ unions is almost $O(m+n)$
- We won’t prove it – see text if curious