

Steve Tanimoto
Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed! thank you to all who have contributed!

The $\$ 1 M$ question

The Clay Mathematics Institute Millenium Prize Problems

1. Birch and Swinnerton-Dyer Conjecture
2. Hodge Conjecture
3. Navier-Stokes Equations
4. P vs NP
5. Poincaré Conjecture
6. Riemann Hypothesis
7. Yang-Mills Theory

	Sudoku								
	2				8		5		
			3	4	5	9	8		
			8		9	7	3	4	
	6		7						
	9	8					1	7	
						6		9	
	3	1	9			2			
		4	6	2		8			
		2			3			1	
Autumn 2016			373: D	Struc	es \&	Agorit			$3 \times 3 \times 3$

n $\times \mathbf{n} \times \mathbf{n}$

[^0]CSE 373: Data Structures \& Algorithms

Sudoku

Suppose you have an algorithm $\mathbf{S (n)}$ to solve $n \times n \times n$, with running time $T(n)$.
$\mathrm{V}(\mathrm{n})$: time to verify the solution.
Fact: $V(n) \in \Theta\left(n^{2} \times n^{2}\right)$
Question: is there some constant such that $T(n) \in O\left(n^{\text {constant }}\right)$?

The P versus NP problem (informally)

Is finding an answer to a problem much more difficult than verifying an answer to a problem?

Independent Set		
Given a graph $G=(V, E)$, and an integer k, is there a a subset of V with at least k vertices such that no two of them are adjacent?		
YES if G has an independent set of size k.		
NO if G has no independent set of size k. Yes for $k=3$; no for $k=4$		
The Set "INDEP-SET ${ }_{k}$ " INDEP-SET ${ }_{k}=\{$ graph $G \mid G$ has an independent set of size $k\}$		
Autumn 2016	CSE 373: Data Structures \& Algorithms	13

Autumn 20 CSE 373: Data Structures \& Algorithms 13

Circuit-Satisfiability

Input: A circuit C with one output
Output: \quad YES if \mathbf{C} is satisfiable

Polynomial Time and The Class "P"

What is an efficient algorithm?

What is an efficient algorithm?

Does an algorithm running in $O\left(n^{100}\right)$ time count as efficient?

Asking for a poly-time algorithm for a problem sets a (very) low bar when asking for efficient algorithms.

We consider non-polynomial time algorithms to be inefficient.

And hence a necessary condition for an algorithm to be efficient is that it should run in poly-time.

The Class P

The class of all sets that can be verified in polynomial time.

AND
The class of all decision problems that can be decided in polynomial time.

Binary Search
Dijkstra's Algorithm

Breadth-First Search

CSE 373: Data Structures \& Algorithms

Onto the new class, NP
(Nondeterministic Polynomial Time)

Circuit-SAT?
Sudoku?

Autumn 2016

Verifying Membership

Is there a short "proof" I can give you to verify that:
$\mathbf{G} \in \mathrm{HAM}$?
$\mathbf{G} \in$ Sudoku?
G \in Circuit-SAT?

Yes: I can just give you the cycle, solution, circuit

Autumn 2016
CSE 373: Data Structures \& Algorithm

The Class NP

The class of sets for which there exist "short" proofs of membership (of polynomial length)
that can "quickly" verified
(in polynomial time).

Recall: The algorithm doesn't have to find the proof; it just needs to be able to verify that it is a "correct" proof.

Fact: $\mathbf{P} \subseteq \mathbf{N P}$

How could we prove that $N P=P$?

We would have to show that every set in NP has a polynomial time algorithm...

How do I do that?
It may take a long time!
Also, what if I forgot one of the sets in NP?

Autumn 2016
CSE 373: Data Structures \& Algorithms 29

Summary: P versus NP

NP: "proof of membership" in a set can be verified in polynomial time.

P: in NP (membership verified in polynomial time)
AND membership in a set can be decided in polynomial time.

Fact: $\mathbf{P} \subseteq \mathbf{N P}$
Question: Does NP $\subseteq \mathbf{P}$?
i.e., Does $P=N P$?

People generally believe $\mathbf{P} \neq \mathrm{NP}$, but no proof yet

Autumn 2016
26 CSE 373: Data Structures \& Algorithms

NP Contains Lots of Problems We Don't Know to be in P

Classroom Scheduling
Packing objects into bins
Scheduling jobs on machines
Finding cheap tours visiting a subset of cities
Finding good packet routings in networks
Decryption

OK, OK, I care...
Autumn 2016
CSE 373: Data Structures \& Algorithms

How could we prove that $N P=P$?

We can describe just one problem L in NP, such that if this problem L is in P, then $N P \subseteq P$.

It is a problem that can capture all other problems in NP.

The "Hardest" Set in NP
We call these problems NP-complete

Theorem (Cook/Levin)

Circuit-SAT is one problem in NP, such that if we can show Circuit-SAT is in P, then we have shown $N P=P$.

Circuit-SAT is a problem in NP that can capture all other languages in NP.

We say SAT is NP-complete.

Autumn 2016

Poly-time reducible to each other

NP-complete: The "Hardest"problems in NP
Sudoku Clique 3SAT
Circuit-SAT Independent-Set
3-Colorability
HAM
These problems are all "polynomial-time equivalent"
i.e., each of these can be reduced to any of the
others in polynomial time
If you get a polynomial-time algorithm for one,
you get a polynomial-time algorithm for ALL.
(you get millions of dollars, you solve decryption, ... etc.)

Autumn 2016

[^0]: Autumn 2016

