Algorithm Design Techniques

- Greedy
- Shortest path, minimum spanning tree, ...
- Divide and Conquer
- Divide the problem into smaller subproblems, solve them, and combine into the overall solution
- Often done recursively
- Quick sort, merge sort are great examples
- Dynamic Programming
- Consider a large set of possible solutions, storing solutions to subproblems to avoid repeated computation
- Fibonnaci with "memoizing", string alignment, all-pairs minimum-cost paths
- Backtracking
- A clever form of exhaustive search

Autumn 2016 CSE 373: Data Structures \& Algorithms

Algorithm Design Techniques

- Greedy
- Shortest path, minimum spanning tree, ...
- Divide and Conquer
- Divide the problem into smaller subproblems, solve them, and combine into the overall solution
- Often done recursively
- Quick sort, merge sort are great examples
- Dynamic Programming
- Consider a large set of possible solutions, storing solutions to subproblems to avoid repeated computation
- Fibonnaci with "memoizing", string alignment, all-pairs minimum-cost paths
- Backtracking
- A clever form of exhaustive search

Autumn 2016 CSE 373: Data Structures \& Algorithms 3

Algorithm Design Techniques

- Greedy
- Shortest path, minimum spanning tree, ...
- Divide and Conquer
- Divide the problem into smaller subproblems, solve them, and combine into the overall solution
- Often done recursively
- Quick sort, merge sort are great examples
- Dynamic Programming
- Consider a large set of possible solutions, storing solutions to subproblems to avoid repeated computation
- Fibonnaci with "memoizing", string alignment, all-pairs minimum-cost paths
- Backtracking

Dynamic Programming: Idea

- Divide a bigger problem into many smaller subproblems

Fibonacci Sequence: Recursive

- The fibonacci sequence is a very famous number sequence
- $0,1,1,2,3,5,8,13,21,34$,..
- The next number is found by adding up the two numbers before it.
- Recursive solution:
fib(int n) $\{$
if ($\mathrm{n}==1| | \mathrm{n}==2$) 1
return 1
\}
return fib(n-2) +fib(n-1)
\}
- Exponential running time!
- A lot of repeated computation

Autumn 2016
CSE 373: Data Structures \& Algorithms


```
Another Application of Dynamic Programming: The String Alignment Problem
- Given 2 strings, find a best alignment of them.
\(s=\) THEESE SEAMS TOO BEE STRENG
```



```
- aligned to a character:
1 if matches, -1 if different.
- aligned to a gap: |
-1 for gap (on either top or bottom).
- score \(=\) sum of the individual alignment scores.
Mutumn 2016
CSE 373: Data Structures \& Algorithms
```


Building the Matrix (using D.P.)

- Initialize the matrix by giving the top row and left column, as shown.
- Loop through the remaining cells, always working in a "corner" where the entries to the left and above are already defined.
- Compute the new value as the max of three possible cases:
- match character on the top to the gap: take the score from the left and above and add gap cost (-1)
- match character on the bottom (left in the matrix) to the gap: take the score from above and add gap cost (-1)
- match character on the top to character on the bottom (left in the matrix): take the score from above-left (diagonally adjacent), and add the character match score (1 if characters are the same, -1 if they are different).
- At each cell, indicate where the value came from (point to one of the three cells, depending on how the max turned out.)
Autumn 2016
CSE 373: Data Structures \& Algorithms

Fibonacci Sequence: memoized
fib(int n) :
results $=\operatorname{Map}() \quad \#$ Empty mapping container.
results.put(1, 1)
results.put (2, 1)
return fibHelper(n, results)
fibHelper(int n, Map results):
if (!results.contains(n)):
results.put(n, fibHelper ($n-2$) + fibHelper $(n-1)$)
return results.get(n)

Now each call of $\mathbf{f i b}(\mathbf{x})$ only gets computed once for each x !

Autumn 2016

Construct a Scoring Matrix

Backtracing to Get the Solution (D.P.)

- Start at the lower-right corner of the matrix.
- Follow the arrows (the markers that indicate where each cell's value came from).
- Reverse the resulting path to get an indication of the best alignment (and/or the longest common subsequence of the two strings).
- Time requirement: $\Theta(m \cdot n)$, where m and n are the lengths of the input strings.
- This is much better than a brute force algorithm that computes all possible alignments and then finds the one with the highest score. That would take time in $\Omega\left(2^{\min (m, n)}\right)$, which is at least exponential in the length of the shorter string.

Autumn 2016
CSE 373: Data Structures \& Algorithms

Sample Applications of String Alignment

- Error correction in search queries.
- DNA sequence analysis (compare patient's DNA segment to a well-studied gene variation.
- 3D (depth) image from a stereo pair of images. (Each row of pixels from a left-eye image must be aligned with a row of pixels from a right-eye image before depth disparity values can be computed.)
- Computer analysis of musical themes and variations.
- Speech recognition at the phoneme-to-word level.

Algorithm Design Techniques

- Greedy
- Shortest path, minimum spanning tree, ...
- Divide and Conquer
- Divide the problem into smaller subproblems, solve them, and combine into the overall solution
- Often done recursively
- Quick sort, merge sort are great examples
- Dynamic Programming
- Consider a large set of possible solutions, storing solutions to subproblems to avoid repeated computation
- Fibonnaci with "memoizing", string alignment, all-pairs minimum-cost paths
- Backtracking
- A clever form of exhaustive search

Autumn 2016 CSE 373: Data Structures \& Algorithms

Backtracking: Idea

- Backtracking is a technique used to solve problems with a large search space, by systematically trying and eliminating possibilities.
- A standard example of backtracking would be going through a maze.
- At some point, you might have two options of which direction to go:

Backtracking

One strategy would be to try going through Portion A of the maze.

If you get stuck before you find your way out, then you "backtrack" to the junction.

At this point in time you know that Portion A will NOT lead you out of the maze,
so you then start searching in Portion B

Autumn 2016
CSE 373: Data Structures \& Algorithms

Backtracking (animation)

19
CSE 373: Data Structures \& Algorithms
,

Backtracking

- Dealing with the maze:
- From your start point, you will iterate through each possible starting move.
- From there, you recursively move forward.
- If you ever get stuck, the recursion takes you back to where you were, and you try the next possible move.
- Make sure you don't try too many possibilities,
- Mark which locations in the maze have been visited already so that no location in the maze gets visited twice.
- (If a place has already been visited, there is no point in trying to reach the end of the maze from there again.

Backtracking: The 8 queens problem

- Find an arrangement of 8 queens on a single chess board such that no two queens are attacking one another.
- In chess, queens can move all the way down any row, column or diagonal (so long as no pieces are in the way).
- Due to the first two restrictions, it's clear that each row and column of the board will have exactly one queen.

Autumn 2016

Backtracking - 8 queens Analysis

- Another possible brute-force algorithm is generate all possible permutations of the numbers 1 through 8 (there are $8!=40,320$),
- Use the elements of each permutation as possible positions in which to place a queen on each row.
- Reject those boards with diagonal attacking positions.
- The backtracking algorithm does a bit better
- constructs the search tree by considering one row of the board at a time, eliminating most non-solution board positions at a very early stage in their construction.
- because it rejects row and diagonal attacks even on incomplete boards, it examines only 15,720 possible queen placements.
- 15,720 is still a lot of possibilities to consider
- Sometimes we have no other choice but to do the best we can ©

Autumn 2016
CSE 373: Data Structures \& Algorithms
24

Algorithm Design Techniques

- Greedy
- Shortest path, minimum spanning tree, ...
- Divide and Conquer
- Divide the problem into smaller subproblems, solve them, and combine into the overall solution
- Often done recursively
- Quick sort, merge sort are great examples
- Dynamic Programming
- Consider a large set of possible solutions, storing solutions to subproblems to avoid repeated computation
- Fibonnaci with "memoizing", string alignment, all-pairs minimum-cost paths
- Backtracking
- A clever form of exhaustive search

Autumn 2016
CSE 373: Data Structures \& Algorithms

