
11/25/2016

1

CSE373: Data Structures and Algorithms

Algorithm Design Paradigms

Steve Tanimoto

Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Algorithm Design Techniques

• Greedy

– Shortest path, minimum spanning tree, …

• Divide and Conquer

– Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

– Often done recursively

– Quick sort, merge sort are great examples

• Dynamic Programming

– Consider a large set of possible solutions, storing solutions
to subproblems to avoid repeated computation

– Fibonnaci with "memoizing", string alignment, all-pairs
minimum-cost paths

• Backtracking

– A clever form of exhaustive search

Autumn 2016 2CSE 373: Data Structures & Algorithms

Algorithm Design Techniques

• Greedy

– Shortest path, minimum spanning tree, …

• Divide and Conquer

– Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

– Often done recursively

– Quick sort, merge sort are great examples

• Dynamic Programming

– Consider a large set of possible solutions, storing solutions
to subproblems to avoid repeated computation

– Fibonnaci with "memoizing", string alignment, all-pairs
minimum-cost paths

• Backtracking

– A clever form of exhaustive search

Autumn 2016 3CSE 373: Data Structures & Algorithms

Algorithm Design Techniques

• Greedy

– Shortest path, minimum spanning tree, …

• Divide and Conquer

– Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

– Often done recursively

– Quick sort, merge sort are great examples

• Backtracking

– A clever form of exhaustive searchAutumn 2016 4CSE 373: Data Structures & Algorithms

Dynamic Programming: Idea

• Divide a bigger problem into many smaller subproblems

• If the number of subproblems grows exponentially, a recursive
solution may have an exponential running time

• Dynamic programming to the rescue!

• Often an individual subproblem may occur many times!

– Store the results of subproblems in a table and re-use them
instead of recomputing them

– Technique called memoization

Autumn 2016 5CSE 373: Data Structures & Algorithms

Fibonacci Sequence: Recursive

• The fibonacci sequence is a very famous number sequence

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

• The next number is found by adding up the two numbers before it.

• Recursive solution:

• Exponential running time!

– A lot of repeated computation

Autumn 2016 6CSE 373: Data Structures & Algorithms

fib(int n) {
if (n == 1 || n == 2) {
return 1

}
return fib(n – 2) + fib(n – 1)

}

11/25/2016

2

Repeated computation

Autumn 2016 7CSE 373: Data Structures & Algorithms

f(7)

f(5)

f(3)

f(4)

f(1) f(2)

f(6)

f(4) f(5)

f(2) f(3)

f(3)

f(4)
f(1) f(2)

f(2) f(3)

f(1) f(2)

f(2) f(3)

f(1) f(2)
f(1) f(2)

Fibonacci Sequence: memoized

Now each call of fib(x) only gets computed once for each x!

Autumn 2016 8CSE 373: Data Structures & Algorithms

fib(int n):
results = Map() # Empty mapping container.
results.put(1, 1)
results.put(2, 1)
return fibHelper(n, results)

fibHelper(int n, Map results):
if (!results.contains(n)):

results.put(n, fibHelper(n-2)+fibHelper(n-1))
return results.get(n)

9

Another Application of Dynamic Programming:
The String Alignment Problem

• Given 2 strings, find a best alignment of them.

s = THEESE SEAMS TOO BEE STRENG

t = THIS SEEMS TO BE A STRING

• aligned to a character: 1 if matches, -1 if different.

• aligned to a gap: -1 for gap (on either top or bottom).

• score = sum of the individual alignment scores.

Autumn 2016 CSE 373: Data Structures & Algorithms

Construct a Scoring Matrix

Autumn 2016 10CSE 373: Data Structures & Algorithms

courtesy of https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

Building the Matrix (using D.P.)
• Initialize the matrix by giving the top row and left column, as

shown.

• Loop through the remaining cells, always working in a "corner"
where the entries to the left and above are already defined.

• Compute the new value as the max of three possible cases:

– match character on the top to the gap: take the score from
the left and above and add gap cost (-1)

– match character on the bottom (left in the matrix) to the gap:
take the score from above and add gap cost (-1)

– match character on the top to character on the bottom (left in
the matrix): take the score from above-left (diagonally
adjacent), and add the character match score (1 if
characters are the same, -1 if they are different).

• At each cell, indicate where the value came from (point to one of
the three cells, depending on how the max turned out.)

Autumn 2016 11CSE 373: Data Structures & Algorithms

Backtracing to Get the Solution (D.P.)

• Start at the lower-right corner of the matrix.

• Follow the arrows (the markers that indicate where each cell's
value came from).

• Reverse the resulting path to get an indication of the best
alignment (and/or the longest common subsequence of the two
strings).

• Time requirement: (m n), where m and n are the lengths of
the input strings.

• This is much better than a brute force algorithm that computes
all possible alignments and then finds the one with the highest
score. That would take time in (2min(m,n)), which is at least
exponential in the length of the shorter string.

Autumn 2016 12CSE 373: Data Structures & Algorithms

11/25/2016

3

Sample Applications of String Alignment

• Error correction in search queries.

• DNA sequence analysis (compare patient's DNA segment to a
well-studied gene variation.

• 3D (depth) image from a stereo pair of images. (Each row of
pixels from a left-eye image must be aligned with a row of pixels
from a right-eye image before depth disparity values can be
computed.)

• Computer analysis of musical themes and variations.

• Speech recognition at the phoneme-to-word level.

Autumn 2016 13CSE 373: Data Structures & Algorithms 14

Comments

• Dynamic programming relies on working “from the bottom up”
and saving the results of solving simpler problems

– These solutions to simpler problems are then used to
compute the solution to more complex problems

• Dynamic programming solutions can often be quite complex
and tricky

• Dynamic programming is used for optimization problems,
especially ones that would otherwise take exponential time

– Only problems that satisfy the principle of optimality are
suitable for dynamic programming solutions

– i.e. the subsolutions of an optimal solution of the problem
are themselves optimal solutions for their subproblems

• Since exponential time is unacceptable for all but the smallest
problems, dynamic programming is sometimes essential

Autumn 2016 CSE 373: Data Structures & Algorithms

Algorithm Design Techniques

• Greedy

– Shortest path, minimum spanning tree, …

• Divide and Conquer

– Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

– Often done recursively

– Quick sort, merge sort are great examples

• Dynamic Programming

– Consider a large set of possible solutions, storing solutions
to subproblems to avoid repeated computation

– Fibonnaci with "memoizing", string alignment, all-pairs
minimum-cost paths

Autumn 2016 15CSE 373: Data Structures & Algorithms

• Backtracking is a technique used to solve problems with a large
search space, by systematically trying and eliminating possibilities.

• A standard example of backtracking would be going through a maze.

– At some point, you might have two options of which direction to go:

Junction

Portion A

P
o

rt
io

n
 B

Backtracking: Idea

Autumn 2016 CSE 373: Data Structures & Algorithms 16

Portion B

P
or

tio
n

 A

One strategy would be to try going
through Portion A of the maze.

If you get stuck before you find your
way out, then you "backtrack" to the
junction.

At this point in time you know that
Portion A will NOT lead you out of the
maze,

so you then start searching in
Portion B

Backtracking

Autumn 2016 CSE 373: Data Structures & Algorithms 17

• Clearly, at a single junction you could
have even more than 2 choices.

• The backtracking strategy says to try
each choice, one after the other,

– if you ever get stuck, "backtrack"
to the junction and try the next
choice.

• If you try all choices and never found
a way out, then there IS no solution to
the maze.

B
C

A

Backtracking

Autumn 2016 CSE 373: Data Structures & Algorithms 18

11/25/2016

4

19

Backtracking (animation)

start ?

?
dead end

dead end

?
?

dead end

dead end

?

success!

dead end

Autumn 2016CSE 373: Data Structures & Algorithms

Backtracking
• Dealing with the maze:

– From your start point, you will iterate through each possible
starting move.

– From there, you recursively move forward.

– If you ever get stuck, the recursion takes you back to where
you were, and you try the next possible move.

• Make sure you don't try too many possibilities,

– Mark which locations in the maze have been visited already so
that no location in the maze gets visited twice.

– (If a place has already been visited, there is no point in trying to
reach the end of the maze from there again.

Autumn 2016 CSE 373: Data Structures & Algorithms 20

The neat thing about coding up backtracking is that it can be done
recursively, without having to do all the bookkeeping at once.

– Instead, the stack of recursive calls does most of the
bookkeeping

– (i.e., keeps track of which locations we’ve tried so far.)

Backtracking

Autumn 2016 CSE 373: Data Structures & Algorithms 21

• Find an arrangement of 8 queens on a
single chess board such that no two
queens are attacking one another.

• In chess, queens can move all the way
down any row, column or diagonal (so
long as no pieces are in the way).

– Due to the first two restrictions, it's
clear that each row and column of the
board will have exactly one queen.

Backtracking: The 8 queens problem

Autumn 2016 CSE 373: Data Structures & Algorithms 22

The backtracking strategy is as follows:

1) Place a queen on the first available
square in row 1.

2) Move onto the next row, placing a
queen on the first available square
there (that doesn't conflict with the
previously placed queens).

3) Continue in this fashion until either:

a) You have solved the problem, or

b) You get stuck.

When you get stuck, remove the
queens that got you there, until you
get to a row where there is another
valid square to try.

Animated Example:
http://www.hbmeyer.de/backt
rack/achtdamen/eight.htm#u
p

Q
Q

Q
Q

Q Q

Continue…

Backtracking

Autumn 2016 CSE 373: Data Structures & Algorithms 23

• Another possible brute-force algorithm is generate all possible
permutations of the numbers 1 through 8 (there are 8! = 40,320),
– Use the elements of each permutation as possible positions in

which to place a queen on each row.
– Reject those boards with diagonal attacking positions.

• The backtracking algorithm does a bit better
– constructs the search tree by considering one row of the board at

a time, eliminating most non-solution board positions at a very
early stage in their construction.

– because it rejects row and diagonal attacks even on incomplete
boards, it examines only 15,720 possible queen placements.

• 15,720 is still a lot of possibilities to consider
– Sometimes we have no other choice but to do the best we can

Backtracking – 8 queens Analysis

Autumn 2016 CSE 373: Data Structures & Algorithms 24

11/25/2016

5

Algorithm Design Techniques

• Greedy

– Shortest path, minimum spanning tree, …

• Divide and Conquer

– Divide the problem into smaller subproblems,
solve them, and combine into the overall solution

– Often done recursively

– Quick sort, merge sort are great examples

• Dynamic Programming

– Consider a large set of possible solutions, storing solutions
to subproblems to avoid repeated computation

– Fibonnaci with "memoizing", string alignment, all-pairs
minimum-cost paths

• Backtracking

– A clever form of exhaustive search

Autumn 2016 25CSE 373: Data Structures & Algorithms

