

This lecture material represents the work of multiple instructors at the University of Washington. Thank you to all who have contributed!

Sorting: The Big Picture Surprising amount of neat stuff to say about sorting:				
Simple algorithms: O(n ²)	Fancier algorithms: O(n log n)	Comparison lower bound: $\Omega(n \log n)$	Specialized algorithms: O(n)	Handling huge data sets
Insertion sort Selection sort Shell sort	Heap sort Merge sort Quick sort		Bucket sort Radix sort	External sorting
Autumn 2016 CSE 373: Data Structures & Algorithms				2

Last Slide on Sorting

- Simple $O(n^2)$ sorts can be fastest for small n
- Selection sort, Insertion sort (latter linear for mostly-sorted)
 Good for "below a cut-off" to help divide-and-conquer sorts
- O(n log n) sorts
 - Heap sort, in-place but not stable nor parallelizable
 - Merge sort, not in place but stable and works as external sort
 - Quick sort, in place but not stable and O(n²) in worst-case
 Often fastest, but depends on costs of comparisons/copies
- Ω (n log n) is worst-case and average lower-bound for sorting by comparisons

9

- Non-comparison sorts
 - Bucket sort good for small number of possible key values
- Radix sort uses fewer buckets and more phases
- · Best way to sort? It depends!

Autumn 2016 CSE 373: Data Structures & Algorithms

Done with sorting! (phew..)

- Moving on....
- There are many many algorithm techniques in the world
 We've learned a few
- What are a few other "classic" algorithm techniques you should at least have heard of?
 And what are the main ideas behind how they work?
 - And what are the main ideas behind now they work?

Autumn 2016

CSE 373: Data Structures & Algorithms

10