

## Introduction to Sorting

- Stacks, queues, priority queues, and dictionaries all focused on providing one element at a time
- But often we know we want "all the things" in some order
- Humans can sort, but computers can sort fast
- Very common to need data sorted somehow
- Alphabetical list of people
- List of countries ordered by population
- Search engine results by relevance
- Algorithms have different asymptotic and constant-factor trade-offs
- No single "best" sort for all scenarios
- Knowing one way to sort just isn't enough

Autumn 2016
CSE 373: Data Structures \& Algorithms

## Why Study Sorting in this Class?

- You might never need to reimplement a sorting algorithm yourself - Standard libraries will generally implement one or more (Java implements 2)
- You will almost certainly use sorting algorithms
- Important to understand relative merits and expected performance
- Excellent set of algorithms for practicing analysis and comparing design techniques
- Classic part of a data structures class, so you'll be expected to know it

Autumn 2016
CSE 373: Data Structures \& Algorithms
4

## Variations on the Basic Problem

1. Maybe elements are in a linked list (could convert to array and back in linear time, but some algorithms needn't do so)
2. Maybe ties need to be resolved by "original array position"

- Sorts that do this naturally are called stable sorts
- Others could tag each item with its original position and adjust comparisons accordingly (non-trivial constant factors)

3. Maybe we must not use more than $O(1)$ "auxiliary space"

- Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare

- Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory

- Use an "external sorting" algorithm

Autumn 2016
CSE 373: Data Structures \& Algorithms


## Insertion Sort

- Idea: At step $\mathbf{k}$, put the $\mathbf{k}^{\text {th }}$ element in the correct position among the first $\mathbf{k}$ elements
- Alternate way of saying this:
- Sort first two elements
- Now insert $3^{\text {rd }}$ element in order
- Now insert $4^{\text {th }}$ element in order
- ...
- "Loop invariant": when loop index is $\mathbf{i}$, first $\mathbf{i}$ elements are sorted

- Time?

Best-case ___ Worst-case ____ "Average" case ___

Autumn 2016
CSE 373: Data Structures \& Algorithms 8

## Selection sort

- Idea: At step $\mathbf{k}$, find the smallest element among the not-yetsorted elements and put it at position $k$
- Alternate way of saying this:
- Find smallest element, put it $1^{\text {st }}$
- Find next smallest element, put it $2^{\text {nd }}$
- Find next smallest element, put it $3^{\text {rd }}$..
- "Loop invariant": when loop index is $\mathbf{i}$, first $\mathbf{i}$ elements are the $\mathbf{i}$ smallest elements in sorted order
- Let's see a visualization (
- Time?

Best-case $\qquad$ Worst-case $\qquad$ "Average" case $\qquad$
Autumn 2016
CSE 373: Data Structures \& Algorithms

## Selection sort

- Idea: At step $\mathbf{k}$, find the smallest element among the not-yetsorted elements and put it at position k
- Alternate way of saying this
- Find smallest element, put it $1^{\text {st }}$
- Find next smallest element, put it $2^{\text {nd }}$
- Find next smallest element, put it $3^{\text {rd }} \ldots$
- "Loop invariant": when loop index is $\mathbf{i}$, first $\mathbf{i}$ elements are the $\mathbf{i}$ smallest elements in sorted order
- Let's see a visualization (
- Time?

Best-case $O\left(n^{2}\right)$ Worst-case $O\left(n^{2}\right)$ "Average" case $O\left(n^{2}\right)$ Always $\mathrm{T}(1)=1$ and $\mathrm{T}(\mathrm{n})=\mathrm{n}+\mathrm{T}(\mathrm{n}-1)$
Autumn 2016 CSE 373: Data Structures \& Algorithms 11

## Insertion Sort vs. Selection Sort

- Different algorithms
- Solve the same problem
- Have the same worst-case and average-case asymptotic complexity
- Insertion-sort has better best-case complexity; preferable when input is "mostly sorted"
- Other algorithms are more efficient for large arrays that are not already almost sorted
- Insertion sort may do well on small arrays

Autumn 2016 CSE 373: Data Structures \& Algorithms

## Aside: We Will Not Cover Bubble Sort

- It is not, in my opinion, what a "normal person" would think of
- It doesn't have good asymptotic complexity: $O\left(n^{2}\right)$
- It's not particularly efficient with respect to constant factors

Basically, almost everything it is good at some other algorithm is at least as good at

- Perhaps people teach it just because someone taught it to them?

Fun, short, optional read:
Bubble Sort: An Archaeological Algorithmic Analysis, Owen Astrachan, SIGCSE 2003, http://www.cs.duke.edu/~ola/bubble/bubble.pdf

Autumn 2016 CSE 373: Data Structures \& Algorithms 13

Insertion sort
Selection sort
Shell sort

## The Big Picture

Surprising amount of juicy computer science: 2-3 lectures..


## "AVL sort"

- We can also use a balanced tree to:
- insert each element: total time $O(n \log n)$
- Repeatedly deleteMin: total time $O(n \log n)$
- Better: in-order traversal $O(n)$, but still $O(n \log n)$ overall
- But this cannot be made in-place and has worse constant factors than heap sort
- both are $O(n \log n)$ in worst, best, and average case
- neither parallelizes well
- heap sort is better
- Don't even think about trying to sort with a hash table!
- Finding min item in a hashtable is $O(n)$, so this would be a slower, more complicated selection sort
- And we've already seen that selection sort is pretty bad!


## Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts
2. Independently solve the simpler parts

- Think recursion
- Or potential parallelism

3. Combine solution of parts to produce overall solution
(This technique has a long history.)

Autumn 2016
CSE 373: Data Structures \& Algorithms 19

## Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)

Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole (we covered Mergesort early in the quarter)
2. Quicksort:

Pick a "pivot" element
Divide elements into less-than pivot and greater-than pivot
Sort the two divisions (recursively on each) Answer is:
sorted-less-than then pivot then sorted-greater-than

## Quicksort Overview

1. Pick a pivot element
2. Partition all the data into
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort $A$ and $C$
4. The answer is, "as simple as A, B, C"

Autumn 2016 CSE 373: Data Structures \& Algorithms 21

Think in Terms of Sets


## Details

Have not yet explained:

- How to pick the pivot element
- Any choice is correct: data will end up sorted
- But as analysis will show, want the low and high subsets to be about equal in size
- How to implement partitioning
- In linear time
- In place


## Pivots

- Best pivot?
- Median
- Halve each time

| 8 | 2 | 9 | 4 | 5 | 3 | 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Worst pivot?
- Greatest/least element
- Problem of size n-1
- O( $\left.n^{2}\right)$

Autumn 2016 CSE 373: Data Structures \& Algorithms 25

## Potential pivot rules

While sorting arr from 10 to hi-1 ...

- Pick arr [lo] or arr [hi-1]
- Fast, but worst-case occurs with mostly sorted input
- Pick random element in the range
- Does as well as any technique, but (pseudo)random number generation can be slow
- Still probably the most elegant approach
- Median of 3, e.g., arr[lo], arr[hi-1], arr [(hi+lo)/2]
- Common heuristic that tends to work well

Autumn 2016
CSE 373: Data Structures \& Algorithms

## Example

- Step one: pick pivot as median of 3
- lo = 0, hi = 10

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 8 & 1 & 4 & 9 & 0 & 3 & 5 & 2 & 7 & 6 \\
\hline
\end{array}
$$

- Step two: move pivot to the 10 position

2. Use two cursors $i$ and $j$, starting at lo+1 and hi-1
3. while (i < j)
if (arr[j] > pivot) j--
else if (arr[i] < pivot) i++
else swap arr[i] with arr[j]
4. Swap pivot with arr [i] *
*skip step 4 if pivot ends up being least element
Autumn 2016 CSE 373: Data Structures \& Algorithms 27

Often have more than one swap during partitioning this is a short example

## Quick sort visualization

- hitp:///www.cs.usfca.edu/~galles/visualization/ComparisonSort.html


## Analysis

- Best-case: Pivot is always the median
$\mathrm{T}(0)=\mathrm{T}(1)=1$
$\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+n \quad$-- linear-time partitioning
Same recurrence as merge sort: $O(n \log n)$
- Worst-case: Pivot is always smallest or largest element $\mathrm{T}(0)=\mathrm{T}(1)=1$
$\mathrm{T}(n)=1 \mathrm{~T}(n-1)+n$
Basically same recurrence as selection sort: $O\left(n^{2}\right)$
- Average-case (e.g., with random pivot)
- O( $n \log n$ ), not responsible for proof (in text)

Autumn 2016
CSE 373: Data Structures \& Algorithms

## Cutoffs

- For small $n$, all that recursion tends to cost more than doing a quadratic sort
- Remember asymptotic complexity is for large $n$
- Common engineering technique: switch algorithm below a cutoff
- Reasonable rule of thumb: use insertion sort for $n<10$
- Notes:
- Could also use a cutoff for merge sort
- Cutoffs are also the norm with parallel algorithms - Switch to sequential algorithm
- None of this affects asymptotic complexity


## Cutoff pseudocode

```
void quicksort(int[] arr, int lo, int hi) {
    if(hi - lo < CUTOFF)
    insertionSort(arr,lo,hi) ;
    else
}
```

Notice how this cuts out the vast majority of the recursive calls

- Think of the recursive calls to quicksort as a tree
- Trims out the bottom layers of the tree

Autumn 2016

