
11/25/2016

1

CSE373: Data Structures and Algorithms

Comparison Sorting

Steve Tanimoto

Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Introduction to Sorting

• Stacks, queues, priority queues, and dictionaries all focused on
providing one element at a time

• But often we know we want “all the things” in some order

– Humans can sort, but computers can sort fast

– Very common to need data sorted somehow

• Alphabetical list of people

• List of countries ordered by population

• Search engine results by relevance

• …

• Algorithms have different asymptotic and constant-factor trade-offs

– No single “best” sort for all scenarios

– Knowing one way to sort just isn’t enough

Autumn 2016 2CSE 373: Data Structures & Algorithms

More Reasons to Sort

General technique in computing:

Preprocess data to make subsequent operations faster

Example: Sort the data so that you can
– Find the kth largest in constant time for any k

– Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on

– How often the data will change (and how much it will change)

– How much data there is

Autumn 2016 3CSE 373: Data Structures & Algorithms

Why Study Sorting in this Class?

• You might never need to reimplement a sorting algorithm yourself

– Standard libraries will generally implement one or more (Java
implements 2)

• You will almost certainly use sorting algorithms

– Important to understand relative merits and expected performance

• Excellent set of algorithms for practicing analysis and comparing design
techniques

– Classic part of a data structures class, so you’ll be expected to know it

Autumn 2016 4CSE 373: Data Structures & Algorithms

The main problem, stated carefully

For now, assume we have n comparable elements in an array and
we want to rearrange them to be in increasing order

Input:
– An array A of data records

– A key value in each data record

– A comparison function (consistent and total)

Effect:
– Reorganize the elements of A such that for any i and j,

if i < j then A[i] A[j]

– (Also, A must have exactly the same data it started with)

– Could also sort in reverse order, of course

An algorithm doing this is a comparison sort

Autumn 2016 5CSE 373: Data Structures & Algorithms

Variations on the Basic Problem

1. Maybe elements are in a linked list (could convert to array and
back in linear time, but some algorithms needn’t do so)

2. Maybe ties need to be resolved by “original array position”

– Sorts that do this naturally are called stable sorts

– Others could tag each item with its original position and
adjust comparisons accordingly (non-trivial constant factors)

3. Maybe we must not use more than O(1) “auxiliary space”

– Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare

– Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory

– Use an “external sorting” algorithm

Autumn 2016 6CSE 373: Data Structures & Algorithms

11/25/2016

2

Sorting: The Big Picture

Surprising amount of neat stuff to say about sorting:

Autumn 2016 7CSE 373: Data Structures & Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

Insertion Sort
• Idea: At step k, put the kth element in the correct position among

the first k elements

• Alternate way of saying this:
– Sort first two elements

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?

Best-case _____ Worst-case _____ “Average” case ____

Autumn 2016 8CSE 373: Data Structures & Algorithms

Insertion Sort
• Idea: At step k, put the kth element in the correct position among

the first k elements

• Alternate way of saying this:
– Sort first two elements

– Now insert 3rd element in order

– Now insert 4th element in order

– …

• “Loop invariant”: when loop index is i, first i elements are sorted

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?

Best-case O(n) Worst-case O(n2) “Average” case O(n2)

start sorted start reverse sorted (see text)

Autumn 2016 9CSE 373: Data Structures & Algorithms

Selection sort

• Idea: At step k, find the smallest element among the not-yet-
sorted elements and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd …

• “Loop invariant”: when loop index is i, first i elements are the i
smallest elements in sorted order

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?

Best-case _____ Worst-case _____ “Average” case ____

Autumn 2016 10CSE 373: Data Structures & Algorithms

Selection sort

• Idea: At step k, find the smallest element among the not-yet-
sorted elements and put it at position k

• Alternate way of saying this:

– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd …

• “Loop invariant”: when loop index is i, first i elements are the i
smallest elements in sorted order

• Let’s see a visualization (http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html)

• Time?

Best-case O(n2) Worst-case O(n2) “Average” case O(n2)

Always T(1) = 1 and T(n) = n + T(n-1)
Autumn 2016 11CSE 373: Data Structures & Algorithms

Insertion Sort vs. Selection Sort

• Different algorithms

• Solve the same problem

• Have the same worst-case and average-case asymptotic
complexity

– Insertion-sort has better best-case complexity; preferable
when input is “mostly sorted”

• Other algorithms are more efficient for large arrays that are not
already almost sorted

– Insertion sort may do well on small arrays

Autumn 2016 12CSE 373: Data Structures & Algorithms

11/25/2016

3

Aside: We Will Not Cover Bubble Sort

• It is not, in my opinion, what a “normal person” would think of

• It doesn’t have good asymptotic complexity: O(n2)

• It’s not particularly efficient with respect to constant factors

Basically, almost everything it is good at some other algorithm is at
least as good at

– Perhaps people teach it just because someone taught it to
them?

Fun, short, optional read:

Bubble Sort: An Archaeological Algorithmic Analysis, Owen Astrachan,
SIGCSE 2003, http://www.cs.duke.edu/~ola/bubble/bubble.pdf

Autumn 2016 13CSE 373: Data Structures & Algorithms

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Autumn 2016 14CSE 373: Data Structures & Algorithms

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

Heap sort

• Sorting with a heap is easy:
– insert each arr[i], or better yet use buildHeap

– for i in range(len(arr)):

arr[i] = deleteMin()

• Worst-case running time: O(n log n)

• We have the array-to-sort and the heap

– So this is not an in-place sort

– There’s a trick to make it in-place…

Autumn 2016 15CSE 373: Data Structures & Algorithms

In-place heap sort

– Treat the initial array as a heap (via buildHeap)

– When you delete the ith element, put it at arr[n-i]

• That array location isn’t needed for the heap anymore!

Autumn 2016 16CSE 373: Data Structures & Algorithms

4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

But this reverse sorts –
how would you fix that?

“AVL sort”

• We can also use a balanced tree to:
– insert each element: total time O(n log n)

– Repeatedly deleteMin: total time O(n log n)

• Better: in-order traversal O(n), but still O(n log n) overall

• But this cannot be made in-place and has worse constant
factors than heap sort
– both are O(n log n) in worst, best, and average case

– neither parallelizes well

– heap sort is better

Autumn 2016 17CSE 373: Data Structures & Algorithms

“Hash sort”???

• Don’t even think about trying to sort with a hash table!

• Finding min item in a hashtable is O(n), so this would be a
slower, more complicated selection sort

• And we’ve already seen that selection sort is pretty bad!

Autumn 2016 18CSE 373: Data Structures & Algorithms

11/25/2016

4

Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Independently solve the simpler parts

– Think recursion

– Or potential parallelism

3. Combine solution of parts to produce overall solution

(This technique has a long history.)

Autumn 2016 19CSE 373: Data Structures & Algorithms

Divide-and-Conquer Sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursively)

Sort the right half of the elements (recursively)

Merge the two sorted halves into a sorted whole

(we covered Mergesort early in the quarter)

2. Quicksort: Pick a “pivot” element

Divide elements into less-than pivot

and greater-than pivot

Sort the two divisions (recursively on each)

Answer is:

sorted-less-than then pivot then sorted-greater-than

Autumn 2016 20CSE 373: Data Structures & Algorithms

Quicksort Overview

1. Pick a pivot element

2. Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is, “as simple as A, B, C”

Autumn 2016 21CSE 373: Data Structures & Algorithms

Think in Terms of Sets

Autumn 2016 22CSE 373: Data Structures & Algorithms

13
81

92
43

65

31 57

26

75
0

S select pivot value

13 8192
43 65

31

5726

750S1 S2
partition S

13 4331 57260

S1
81 927565

S2
Quicksort(S1) and

Quicksort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted

[Weiss]

Example, Showing Recursion

Autumn 2016 23CSE 373: Data Structures & Algorithms

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

Details

Have not yet explained:

• How to pick the pivot element

– Any choice is correct: data will end up sorted

– But as analysis will show, want the low and high subsets to
be about equal in size

• How to implement partitioning

– In linear time

– In place

Autumn 2016 24CSE 373: Data Structures & Algorithms

11/25/2016

5

Pivots

• Best pivot?

– Median

– Halve each time

• Worst pivot?

– Greatest/least element

– Problem of size n - 1

– O(n2)

2 4 3 1 8 9 6

8 2 9 4 5 3 1 6

5

8 2 9 4 5 3 6

8 2 9 4 5 3 1 6

1

Autumn 2016 CSE 373: Data Structures & Algorithms 25

Potential pivot rules

While sorting arr from lo to hi-1 …

• Pick arr[lo] or arr[hi-1]

– Fast, but worst-case occurs with mostly sorted input

• Pick random element in the range

– Does as well as any technique, but (pseudo)random number
generation can be slow

– Still probably the most elegant approach

• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]

– Common heuristic that tends to work well

Autumn 2016 26CSE 373: Data Structures & Algorithms

Partitioning

• Conceptually simple, but hardest part to code up correctly

– After picking pivot, need to partition in linear time in-place

• One approach (there are slightly fancier ones):
1. Swap pivot with arr[lo]

2. Use two cursors i and j, starting at lo+1 and hi-1

3. while (i < j)

if (arr[j] > pivot) j--

else if (arr[i] < pivot) i++

else swap arr[i] with arr[j]

4. Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

Autumn 2016 27CSE 373: Data Structures & Algorithms

Example

• Step one: pick pivot as median of 3
– lo = 0, hi = 10

Autumn 2016 28CSE 373: Data Structures & Algorithms

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

• Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

Autumn 2016 29CSE 373: Data Structures & Algorithms

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than
one swap during partitioning –
this is a short example

5 1 4 2 0 3 6 9 7 8

Quick sort visualization

• http://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Autumn 2016 30CSE 373: Data Structures & Algorithms

11/25/2016

6

Analysis

• Best-case: Pivot is always the median

T(0) = T(1)=1

T(n) = 2 T(n/2) + n -- linear-time partitioning
Same recurrence as merge sort: O(n log n)

• Worst-case: Pivot is always smallest or largest element

T(0) = T(1)=1

T(n) = 1 T(n-1) + n

Basically same recurrence as selection sort: O(n2)

• Average-case (e.g., with random pivot)
– O(n log n), not responsible for proof (in text)

Autumn 2016 31CSE 373: Data Structures & Algorithms

Cutoffs

• For small n, all that recursion tends to cost more than doing a
quadratic sort

– Remember asymptotic complexity is for large n

• Common engineering technique: switch algorithm below a cutoff

– Reasonable rule of thumb: use insertion sort for n < 10

• Notes:

– Could also use a cutoff for merge sort

– Cutoffs are also the norm with parallel algorithms

• Switch to sequential algorithm

– None of this affects asymptotic complexity

Autumn 2016 32CSE 373: Data Structures & Algorithms

Cutoff pseudocode

Autumn 2016 33CSE 373: Data Structures & Algorithms

void quicksort(int[] arr, int lo, int hi) {
if(hi – lo < CUTOFF)

insertionSort(arr,lo,hi);
else

…
}

Notice how this cuts out the vast majority of the recursive calls
– Think of the recursive calls to quicksort as a tree
– Trims out the bottom layers of the tree

