

Example \#1

Autumn 2016
CSE 373: Data Structures \& Algorithms

The Algorithm

1. For each node \mathbf{v}, set $\mathbf{v . c o s t}=\infty$ and $\mathbf{v . k n o w n}=$ false
2. Set source. cost $=0$
3. While there are unknown nodes in the graph
a) Select the unknown node \mathbf{v} with lowest cost
b) Mark v as known
c) For each edge (\mathbf{v}, \mathbf{u}) with weight \mathbf{w},
$\mathbf{c 1}=\mathbf{v} \cdot \cos \mathbf{t}+\mathbf{w} / /$ cost of best path through \mathbf{v} to \mathbf{u}
$\mathbf{c 2}=\mathbf{u} . \operatorname{cost} \quad / /$ cost of best path to \mathbf{u} previously known
if(c1 < c2) \{ // if the path through v is better
u.cost $=c 1$
u.path $=\mathbf{v} / /$ for computing actual paths

Dijkstra's Algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A priority queue will turn out to be useful for efficiency
- An example of a greedy algorithm
- A series of steps
- At each one the locally optimal choice is made

Example \#1				
		known?	cost	path
Order Added to Known Set:	A	Y	0	
	B	Y	2	A
	C	Y	1	A
	D	Y	4	A
	E		≤ 12	C
A, C, B, D, F	F	Y	4	B
	G		??	
	H		≤ 7	F
Autumn 2016 CSE 373: Data Stuctures \& Algorithms				10

Features

- When a vertex is marked known,
the cost of the shortest path to that node is known
- The path is also known by following back-pointers
- While a vertex is still not known,
another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way
- Helps give intuition of why the algorithm works

Autumn 2016
CSE 373: Data Structures \& Algorithms

Stopping Short

- How would this have worked differently if we were only interested in:
- The path from A to G ?
- The path from A to E ?

A, C, B, D, F, H, G, E
Order Added to Known Set:

Autumn 2016
CSE 373: Data Structures \& Algorithms

Example \#2				
(F)	A	Y	0	
	B		≤ 3	E
	C	Y	2	A
Order Added to Known Set:	D	Y	1	A
	E	Y	2	D
A, D, C, E	F		≤ 4	C
	G		≤ 6	D
Autumn 2016 CSE 373: Data Structures \& Algorithms 21				

Example \#3

How will the best-cost-so-far for Y proceed?
Is this expensive?

A Greedy Algorithm

- Dijkstra's algorithm
- For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- An example of a greedy algorithm:
- At each step, always does what seems best at that step
- A locally optimal step, not necessarily globally optimal
- Once a vertex is known, it is not revisited
- Turns out to be globally optimal

Where are We?

- Had a problem: Compute shortest paths in a weighted graph with no negative weights
- Learned an algorithm: Dijkstra's algorithm
- What should we do after learning an algorithm?
- Prove it is correct
- Not obvious!
- We will sketch the key ideas
- Analyze its efficiency
- Will do better by using a data structure we learned earlier!

Autumn 2016
CSE 373: Data Structures \& Algorithms 29

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Autumn 2016
CSE 373: Data Structures \& Algorithms

Correctness: The Cloud (Rough Sketch)

Suppose \mathbf{v} is the next node to be marked known ("added to the cloud")

- The best-known path to \mathbf{v} must have only nodes "in the cloud"
- Else we would have picked a node closer to the cloud than \mathbf{v}
- Suppose the actual shortest path to \mathbf{v} is different
- It won't use only cloud nodes, or we would know about it
- So it must use non-cloud nodes. Let w be the first non-cloud node on this path. The part of the path up to \mathbf{w} is already known and must be shorter than the best-known path to \mathbf{v}. So \mathbf{v} would not have been picked. Contradiction.
Autumn 2016 CSE 373: Data Structures \& Algorithms

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

Dijkstra(V, E, vStart):
for v in V :
v.cost=infinity; v.known=False vStart.cost $=0$
while not all nodes are known
$b=$ find unknown node with smallest cost
b.known = True
for edge $=(b, a)$ in E :
if not a.known:
if $b \cdot \cos t+$ weight $((b, a))<a . c o s t:$
a.cost $=b \cdot \cos t+$ weight $((b, a))$
a.path = b

Autumn 2016 CSE 373: Data Structures \& Algorithms

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

Dijkstra(V, E, vStart):
for v in V :
v.cost=infinity; v.known=False
vStart.cost $=0$
while not all nodes are known:
$b=$ find unknown node with smallest cost
b.known = True
for edge $=(b, a)$ in E :
if not a.known:
if $b . \cos t+$ weight $((b, a))<a . c o s t:$
a.cost $=b \cdot \cos t+\operatorname{weight}((b, a))$
a.path $=$ b

Autumn 2016
CSE 373: Data Structures \& Algorithms

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

Dijkstra(V, E, vStart):
for v in V :
v.cost=infinity; v.known=False
vStart.cost $=0$
while not all nodes are known:
b = find unknown node with smallest cost b. known = True
for edge $=(b, a)$ in E :
if not a.known:
if $b \cdot \cos t+$ weight $((b, a))<a . c o s t$:
a.cost $=b \cdot \cos t+$ weight $((b, a))$
a.path $=$ b

Autumn 2016 CSE 373: Data Structures \& Algorithms

Improving asymptotic running time

- So far: $O\left(|\mathrm{~V}|^{2}\right)$
- We had a similar "problem" with topological sort being $O\left(|\mathrm{~V}|{ }^{2}\right)$ due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?

Autumn 2016

Improving (?) asymptotic running time

- So far: $\mathrm{O}\left(\mathrm{V} \mid{ }^{2}\right)$
- We had a similar "problem" with topological sort being $O\left(|\mathrm{~V}|^{2}\right)$ due to each iteration looking for the node to process next
- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- Solution?
- A priority queue holding all unknown nodes, sorted by cost
- But must support decreaseKey operation
- Must maintain a reference from each node to its current position in the priority queue
- Conceptually simple, but can be a pain to code up

Autumn 2016 CSE 373: Data Structures \& Algorithms 38

Efficiency, second approach

Use pseudocode to determine asymptotic run-time
Dijkstra(V, E, vStart):
for v in v :
v.cost=infinity; v.known=False
vStart.cost $=0$
build-heap with all vertices
while heap is not empty:
b = deleteMin()
b. known = True
for edge $=(b, a)$ in E :
if not a.known:
if $\mathbf{b} . \cos t+$ weight $((b, a))<a . c o s t$: decreaseKey(a,"new cost - old cost") a.path $=$ b

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
Dijkstra(V, E, vStart):
```

 for \(v\) in \(v\) :
 v.cost=infinity; v.known=False
 vStart.cost \(=0\)
 build-heap with all vertices
 while heap is not empty:
 b = deleteMin()
 b. known = True
 for edge \(=(b, a)\) in \(E\) :
 if not a.known:
 if \(b . c o s t+\) weight \(((b, a))<a . c o s t\) :
 decreaseKey(\(a\),"new cost - old cost")
 a. path \(=\mathbf{b}\)

Efficiency, second approach

Use pseudocode to determine asymptotic run-time
Dijkstra(V, E, vStart)

Autumn 2016

Dense vs. sparse again

- First approach: $O\left(|\mathrm{~V}|^{2}\right)$
- Second approach: $O(|\mathrm{~V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$
- So which is better?
- Sparse: $O(|\mathrm{~V}| \log |\mathrm{V}|+\mid$ 티og $|\mathrm{V}|)$ (if $|\mathrm{E}|>|\mathrm{V}|$, then $O(|E| \log |\mathrm{V}|)$) - Dense: $O\left(|\mathrm{~V}|^{2}\right)$
- But, remember these are worst-case and asymptotic
- Priority queue might have slightly worse constant factors
- On the other hand, for "normal graphs", we might call decreasekey rarely (or not percolate far), making |E|log|V| more like |E|

Autumn 2016
CSE 373: Data Structures \& Algorithms

