

## Minimum Spanning Tree Algorithms

- Kruskal's Algorithm for Minimum Spanning Tree construction
- A greedy algorithm.
- Uses a priority queue.
- Uses the UNION-FIND technique
- Prim's Algorithm for Minimum Spanning Tree
- Related to Dijkstra's Algorithm for shortest paths.
- Both based on expanding cloud of known vertices (basically using a priority queue instead of a DFS stack)

Autumn 2016 CSE 373: Data Structures \& Algorithms 3

## Kruskal's Algorithm Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Put each node in its own subset (of a UNION-FIND instance).
3. While output size $<|\mathbf{V}|-1$

- Consider next smallest edge (u,v)
- if $f$ ind $(u)$ and $f i n d(v)$ indicate $u$ and $v$ are in different sets
- output (u,v)
- Perform union(find (u), find(v))

Recall invariant:
$u$ and $v$ in same set if and only if connected in output-so-far

Autumn 2016
CSE 373: Data Structures \& Algorithms

## Minimum Spanning Trees

The minimum-spanning-tree problem

- Given a weighted undirected graph, compute a spanning tree of minimum weight

Given an undirected graph $G=(V, E)$, find a graph $G^{\prime}=\left(V, E^{\prime}\right)$ such that:

- $E^{\prime}$ is a subset of $E$
- |E'| = |V|-1
- $G^{\prime}$ is connected
$G^{\prime}$ is a minimum spanning tree.


## Kruskal's Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

## An edge-based greedy algorithm Builds MST by greedily adding edges



## Kruskal's Example



Output:
Note: At each step, the UNION-FIND subsets correspond to the trees in a forest.

Autumn 2016
CSE 373: Data Structures \& Algorithms

## Kruskal's Example



Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Autumn 2016 CSE 373: Data Structures \& Algorithms

## Kruskal's Example



Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: $(\mathrm{E}, \mathrm{G})$
5: ( $D, G$ ), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

## Kruskal's Example



Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

## Kruskal's Example



Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: $(D, G),(B, D)$
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Autumn 2016
CSE 373: Data Structures \& Algorithms
12

## Kruskal's Example



Edges in sorted order
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: ( $\mathrm{D}, \mathrm{G}$ ), ( $\mathrm{B}, \mathrm{D}$ )
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Autumn 2016
CSE 373: Data Structures \& Algorithms

## Kruskal's Example



Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: $(\mathrm{E}, \mathrm{G})$
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest



