

Uses

- Figuring out how to graduate
- Computing an order in which to recompute cells in a spreadsheet
- Determining an order to compile files using a Makefile
- In general, taking a dependency graph and finding an order of execution
- ...

A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree

- Think "write in a field in the vertex"
- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output
a) Choose a vertex \mathbf{v} with labeled with in-degree of 0
b) Output v and conceptually remove it from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v} (i.e. \mathbf{u} such that (\mathbf{v}, \mathbf{u}) in \mathbf{E}), decrement the in-degree of \mathbf{u}

Questions and comments

- Why do we perform topological sorts only on DAGs?
- Because a cycle means there is no correct answer
- Is there always a unique answer?
- No, there can be 1 or more answers; depends on the graph
- Do some DAGs have exactly 1 answer? - Yes, including all lists

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Autumn 2016

Notice

- Needed a vertex with in-degree 0 to start
- Will always have at least 1 because no cycles
- Ties among vertices with in-degrees of 0 can be broken arbitrarily
- Can be more than one correct answer, by definition, depending on the graph

Autumn 2016
CSE373: Data Structures \& Algorithms 17

Running time?

```
labelEachVertexWithItsInDegree()
for ctr in range(numVertices):
    v = findNewVertexOfDegreeZero()
    put v next in output
    for each w adjacent to v:
            w.indegree -=1
```

- What is the worst-case running time?
- Initialization $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ (assuming adjacency list)
- Sum of all find-new-vertex $O\left(|\mathrm{~V}|^{2}\right)$ (because each $O(|\mathrm{~V}|)$)
- Sum of all decrements $O(|E|)$ (assuming adjacency list)
- So total is $O\left(|\mathrm{~V}|^{2}\right)$ - not good for a sparse graph!

Autumn 2016
CSE373: Data Structures \& Algorithms

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0 -degree nodes
2. While queue is not empty
a) $\mathbf{v}=$ dequeue()
b) Output v and remove it from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v} (i.e. \mathbf{u} such that (\mathbf{v}, \mathbf{u}) in $\mathbf{E})$, decrement the in-degree of \mathbf{u}, if new degree is 0 , enqueue it

Autumn 2016
CSE373: Data Structures \& Algorithms

Running time?

labelAllAndEnqueueZeros()
for ctr in range (numVertices) :
$\mathrm{v}=$ dequeue ()
put v next in output
for each w adjacent to v :
w.indegree -= 1
if w.indegree==0: enqueue (v)

- What is the worst-case running time?
- Initialization: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ (assuming adjacency list)
- Sum of all enqueues and dequeues: $O(|\mathrm{~V}|)$
- Sum of all decrements: $O(|E|)$ (assuming adjacency list)
- So total is $O(|E|+|\mathrm{V}|)$ - much better for sparse graph!

Autumn 2016 CSE373: Data Structures \& Algorithms

Graph Traversals

Next problem: For an arbitrary graph and a starting node \mathbf{v}, find all nodes reachable from \mathbf{v} (i.e., there exists a path from v)

- Possibly "do something" for each node
- Examples: print to output, set a field, etc.
- Subsumed problem: Is an undirected graph connected?
- Related but different problem: Is a directed graph strongly connected?
- Need cycles back to starting node

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Autumn 2016
CSE373: Data Structures \& Algorithms
21

Abstract Idea

```
traverseGraph(startNode):
    Set pending = emptySet()
    pending.add(startNode)
    mark startNode as visited
    while pending is not empty:
        next = pending.remove()
        for each node u adjacent to next:
            if(u is not marked):
                mark u
                pending.add (u)
```


Running Time and Options

- Assuming add and remove are $O(1)$, entire traversal is $O(|E|)$
- Use an adjacency list representation
- The order we traverse depends entirely on add and remove
- Popular choice: a stack "depth-first graph search" "DFS"
- Popular choice: a queue "breadth-first graph search" "BFS"
- DFS and BFS are "big ideas" in computer science
- Depth: recursively explore one part before going back to the other parts not yet explored
- Breadth: explore areas closer to the start node first

Autumn 2016
CSE373: Data Structures \& Algorithms
23

Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see"

DFS (startNode) :

Mark and process startNode.
For each node u adjacent to startNode: if u is not marked: DFS (u)

- ABDECFGH
- Exactly what we called a "pre-order traversal" for trees
- The marking is because we support arbitrary graphs and we want to process each node exactly once
Autumn 2016 CSE373: Data Structures \& Algorithms

Example: Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see"

- ABDECFGH
- Exactly what we called a "pre-order traversal" for trees
- The marking is because we support arbitrary graphs and we want to process each node exactly once
Autumn 2016 CSE373: Data Structures \& Algorithms 25

Example: Another Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see"

- ACFHGBED
- A different but perfectly fine traversal

Autumn 2016
CSE373: Data Structures \& Algorithms

Example: Another Depth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see"

- ACFHGBED
- A different but perfectly fine traversal

Autumn 2016
CSE373: Data Structures \& Algorithms

Example: Breadth First Search

- A tree is a graph and DFS and BFS are particularly easy to "see"

- ABCDEFGH
- A "level-order" traversal

Autumn 2016
CSE373: Data Structures \& Algorithms

Saving the Path

- Our graph traversals can answer the reachability question:
- "Is there a path from node x to node y ?"
- But what if we want to actually output the path?
- Like getting driving directions rather than just knowing it's possible to get there!
- How to do it:
- Instead of just "marking" a node, store the previous node along the path (when processing \mathbf{u} causes $u s$ to add \mathbf{v} to the search, set \mathbf{v}. path field to be \mathbf{u})
- When you reach the goal, follow path fields back to where you started (and then reverse the answer)
- If just wanted path length, could put the integer distance at each node instead
Autumn 2016
CSE373: Data Structures \& Algorithms
30

Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Autumn 2016
CSE373: Data Structures \& Algorithm

Single source shortest paths

- Done: BFS to find the minimum path length from \mathbf{v} to \mathbf{u} in $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$
- Actually, can find the minimum path length from \mathbf{v} to every node - Still $O(|\mathrm{E}|+|\mathrm{V}|)$
- No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node \mathbf{v}, find the minimum-cost path from \mathbf{v} to every node

- As before, asymptotically no harder than for one destination

Not as easy as BFS

Why BFS won't work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative
- There are other, slower (but not terrible) algorithms

Dijkstra's Algorithm

- The idea: reminiscent of BFS, but adapted to handle weights
- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A priority queue will turn out to be useful for efficiency
- An example of a greedy algorithm
- A series of steps
- At each one the locally optimal choice is made

