

What is a Graph?

Which kind of graph are we going to study?

Autumn 2016 CSE373: Data Structures \& Algorithms

Undirected Graphs

- In undirected graphs, edges have no specific direction
- Edges are always "two-way"

- Thus, $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$ implies $(\mathbf{v}, \mathbf{u}) \in \mathbf{E}$ (What do we call this property?)
- Only one of these edges needs to be in the set
- The other is implicit, so normalize how you check for it
- Degree of a vertex: number of edges containing that vertex
- Put another way: the number of adjacent vertices

Autumn 2016 CSE373: Data Structures \& Algorithms

Self-Edges, Connectedness

- A self-edge a.k.a. a loop is an edge of the form (u, u)
- Depending on the use/algorithm, a graph may have:
- No self edges
- Some self edges
- All self edges (often therefore implicit, but we will be explicit)
- A node can have a degree / in-degree / out-degree of zero
- A graph does not have to be connected
- Even if every node has non-zero degree

This graph has 4 connected components.

Autumn 2016
CSE373: Data Structures \& Algorithms
6

Weighted Graphs

- In a weighed graph, each edge has a weight a.k.a. cost
- Typically numeric (most examples use ints)
- Orthogonal to whether graph is directed
- Some graphs allow negative weights; many do not

Paths and Cycles

- A path is a list of vertices $\left[\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{n}}\right]$ such that $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+1}\right) \in$ E for all $0 \leq \mathrm{i}<\mathrm{n}$. Say "a path from v_{o} to v_{n} "
- A cycle is a path that begins and ends at the same node $\left(v_{0}==v_{n}\right)$

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle] Autumn 2016 CSE373: Data Structures \& Algorithms

Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

- Web pages with links
- Facebook friends
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites

Path Length and Cost

- Path length: Number of edges in a path
- Path cost: Sum of weights of edges in a path

Example where
$P=$ [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

ength $(P)=5$ $\boldsymbol{\operatorname { c o s t }}(P)=11.5$

Simple Paths and Cycles

- A simple path repeats no vertices, except the first might be the last
[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
- Recall, a cycle is a path that ends where it begins
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle] [Seattle, Salt Lake City, Seattle, Dallas, Seattle]
- A simple cycle is both a cycle and a simple path [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Autumn 2016
Paths and Cycles in Directed Graphs
Example:

Is there a path from A to D ? No
Does the graph contain any cycles? No

Autumn 2016

Directed-Graph Connectivity

- An undirected graph is connected if for all pairs of vertices \mathbf{u}, v, there exists a path from u to v

Connected graph

Disconnected graph

- An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices \mathbf{u}, \mathbf{v}, there exists an edge from \mathbf{u} to \mathbf{v}

Autumn 2016
CSE373: Data Structures \& Algorithm 15

Rooted Trees

- We are more accustomed to rooted trees where:
- We identify a unique root
- We think of edges as directed: parent to children
we say a tree is a
Given a tree, picking a root gives a unique rooted tree
- The tree is just drawn differently
- Acyclic
- Connected

So all trees are graphs, but not all graphs are trees

Autumn 2016
redrawn $\xrightarrow{\square}$

Rooted Trees

- We are more accustomed to rooted trees where:
- We identify a unique root
- We think of edges as directed: parent to children
- Given a tree, picking a root gives a unique rooted tree - The tree is just drawn differently

Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites

What is the Data Structure?

- So graphs are really useful for lots of data and questions
- For example, "what's the lowest-cost path from x to y "
- But we need a data structure that represents graphs
- The "best one" can depend on:
- Properties of the graph (e.g., dense versus sparse)
- The common queries (e.g., "is (u, v) an edge?" versus "what are the neighbors of node u?")
- So we'll discuss the two standard graph representations
- Adjacency Matrix and Adjacency List
- Different trade-offs, particularly time versus space

Autumn 2016
CSE373: Data Structures \& Algorithms

Adjacency Matrix

- Assign each node a number from 0 to $|\mathrm{V}|-1$
- A $|\mathrm{V}| \times|\mathrm{V}|$ matrix (i.e., 2-D array) of Booleans (or 1 vs .0)
- If m is the matrix, then $m[u][v]$ being true means there is an edge from u to v

	0	1	2	3
0	F	T	F	F
1	T	F	F	F
2	F	T	F	T
3	F	F	F	F

Adjacency Matrix Properties

- How will the adjacency matrix vary for an undirected graph?
- Undirected will be symmetric around the diagonal
- How can we adapt the representation for weighted graphs?
- Instead of a Boolean, store a number in each cell
- Need some value to represent 'not an edge'
- In some situations, 0 or -1 works

Autumn 2016

Adjacency List

- Assign each node a number from 0 to $|\mathrm{V}|-1$
- An array of length $|\mathrm{V}|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

- Running time to:
- Get all of a vertex's out-edges: $O(d)$ where d is out-degree of vertex
- Get all of a vertex's in-edges:

O(|E|) (but could keep a second adjacency list for this!)

- Decide if some edge exists:
$O(d)$ where d is out-degree of source
- Insert an edge:
$O(1)$ (unless you need to check if it's there)
- Delete an edge:
$O(d)$ where d is out-degree of source
- Space requirements
- Good for sparse graphs
- O(|V|+|티)

Autumn $2016 \quad$ CSE373: Data Structures \& Algorithms $\quad 28$

Reading for Friday

- By Friday, have read sections 9.1, 9.2 and 9.3 (up to p .384).

This is about 25 pages.
Next lecture we'll implement some useful and non-trivial algorithms

- Topological sort: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors
- Shortest paths: Find the shortest or lowest-cost path from x to y - Related: Determine if there even is such a path
\qquad

