

CSE373: Data Structures and Algorithms

Priority Queues and Binary Heaps

Steve Tanimoto Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington. Thank you to all who have contributed!

A new ADT: Priority Queue

- A priority queue holds compare-able data
 - Like dictionaries, we need to compare items
 - Given x and y, is x less than, equal to, or greater than y
 - Meaning of the ordering can depend on your data
 - Integers are comparable, so will use them in examples
 - But the priority queue ADT is much more general

 - Typically two fields, the priority and the data

Autumn 2016 CSE373: Data Structures & Algorithms

Priorities

- · Each item has a "priority"
 - In our examples, the *lesser* item is the one with the *greater* priority
 - So "priority 1" is more important than "priority 4"
 - (Just a convention, think "first is best")
- Operations:
 - insert
 - deleteMin
 - is empty
- 6 15 23 insert 12 18 deleteMin. 45 3
- Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
 - Can resolve ties arbitrarily

Autumn 2016 CSE373: Data Structures & Algorithms

Example

insert x1 with priority 5 (x1,5)insert x2 with priority 3 (x1,5) (x2,3)insert x3 with priority 4 (x1,5) (x3,4) (x2,3) (x1,5) (x3,4) a = deleteMin // x2 b = deleteMin // x3(x1,5) ${\tt insert} \ {\it x4} \ {\tt with} \ {\tt priority} \ 2$ insert x5 with priority 6

c = deleteMin // x4 d = deleteMin // x1

- Analogy: insert is like enqueue, deleteMin is like dequeue
 - But the whole point is to use priorities instead of FIFO

CSE373: Data Structures & Algorithms Autumn 2016

Applications

Like all good ADTs, the priority queue arises often

- Sometimes blatant, sometimes less obvious
- Run multiple programs in the operating system
 "critical" before "interactive" before "compute-intensive"
 - Maybe let users set priority level
- Treat hospital patients in order of severity (or triage)
- · Select print jobs in order of decreasing length?
- · Forward network packets in order of urgency
- Select most frequent symbols for data compression
- Sort (first insert all, then repeatedly deleteMin)

Autumn 2016

CSE373: Data Structures & Algorithms

Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
 - But first let's analyze some "obvious" ideas for \emph{n} data items
 - All times worst-case; assume arrays "have room"

data		insert algorithm / time		eleteMin algorithm / time	
	unsorted array	add at end	O(1)	search	O(n)
	unsorted linked list	add at front	O(1)	search	O(n)
	sorted circular arra	y search / shift	O(n)	move front	O(1)
	sorted linked list	put in right place	O(n)	remove at fro	ont O(1)
	binary search tree	put in right place	O(n)	leftmost	O(n)
	AVL tree	put in right place	O(log n)	leftmost	O(log <i>n</i>)
	Autumn 2016	CSE373: Data Structure	es & Algorithms		6

CSE373: Data Structures & Algorithms

25

Other operations

Autumn 2016

- decreaseKey: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
 - Change priority and percolate up
- increaseKey: given pointer to object in priority queue (e.g., its array index), raise its priority value by p
 - Change priority and percolate down
- remove: given pointer to object in priority queue (e.g., its array index), remove it from the queue
 - decreaseKey with $p = \infty$, then deleteMin

Running time for all these operations?

Autumn 2016 CSE373: Data Structures & Algorithms

Build Heap

- Suppose you have *n* items to put in a new (empty) priority queue
 - Call this operation buildHeap
- ninserts works
 - Only choice if ADT doesn't provide buildHeap explicitly
 - $-O(n \log n)$
- Why would an ADT provide this unnecessary operation?
 - Convenience
 - Efficiency: an O(n) algorithm called Floyd's Method
 - Common issue in ADT design: how many specialized operations

Autumn 2016 CSE373: Data Structures & Algorithms 3

Floyd's Method 1. Use n items to make any complete tree you want - That is, put them in array indices 1,...,n 2. Treat it as a heap and fix the heap-order property - Bottom-up: leaves are already in heap order, work up toward the root one level at a time void buildHeap() { for(i = size/2; i>0; i--) { val = arr[i]; hole = percolateDown(i,val); arr[hole] = val; } Autumn 2016 (CSE373: Data Structures & Alsorithms

But is it right?

- · "Seems to work"
 - Let's prove it restores the heap property (correctness)
 - Then let's prove its running time (efficiency)

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Autumn 2016

CSE373: Data Structures & Algorithms

39

Correctness

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Loop Invariant: For all j>i, arr[j] is less than its children

- True initially: If j > size/2, then j is a leaf
 - Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown
 make arr[i] less than children without breaking the property
 for any descendants

So after the loop finishes, all nodes are less than their children

Autumn 2016 CSE373: Data Structures & Algorithms

Efficiency

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
   val = arr[i];
   hole = percolateDown(i,val);
   arr[hole] = val;
  }
}
```

Easy argument: buildHeap is $O(n \log n)$ where n is size

- size/2 loop iterations
- Each iteration does one ${\tt percolateDown}$, each is $O(\log n)$

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

Autumn 2016

CSE373: Data Structures & Algorithms

Efficiency

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Better argument: buildHeap is O(n) where n is size

- size/2 total loop iterations: O(n)
- 1/2 the loop iterations percolate at most 1 step
- 1/2 the loop iterations percolate at most 1 step
 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- ...
- ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2 (page 4 of Weiss)
 - So at most 2*(size/2) total percolate steps: O(n)

umn 2016 CSE373: Data Structures & Algorithms

Lessons from buildHeap

- Without ${\tt buildHeap}$, our ADT already let clients implement their own in $O(n \log n)$ worst case
- By providing a specialized operation internal to the data structure (with access to the internal data), we can do O(n) worst case
 - Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
 - Correctness:
 - Non-trivial inductive proof using loop invariant
 - Efficiency:
 - First analysis easily proved it was O(n log n)
 - Tighter analysis shows same algorithm is O(n)

Autumn 2016

CSE373: Data Structures & Algorithms

Floyd's method

Exercise: Build the Heap using

Autumn 2016

43

CSE373: Data Structures & Algorithms