

A new ADT: Priority Queue

- A priority queue holds compare-able data
- Like dictionaries, we need to compare items
- Given x and y, is x less than, equal to, or greater than y
- Meaning of the ordering can depend on your data
- Integers are comparable, so will use them in examples
- But the priority queue ADT is much more general
- Typically two fields, the priority and the data

Priorities

- Each item has a "priority"
- In our examples, the lesser item is the one with the greater priority
- So "priority 1 " is more important than "priority 4 "
- (Just a convention, think "first is best")
- Operations:
- insert
- deleteMin
- is_empty

- Key property: deleteMin returns and deletes the item with greatest priority (lowest priority value)
- Can resolve ties arbitrarily

Autumn 2016
CSE373: Data Structures \& Algorithms

Example

insert $x 1$ with priority 5 insert $x 2$ with priority 3 insert $x 3$ with priority 4 $a=$ deleteMin // x2 $b=$ deleteMin // x3 insert $x 4$ with priority 2 insert $x 5$ with priority 6 c=deleteMin // x4 d=deleteMin // x1

- Analogy: insert is like enqueue, deleteMin is like dequeue - But the whole point is to use priorities instead of FIFO

Autumn 2016 CSE373: Data Structures \& Algorithm

Finding a good data structure

- Will show an efficient, non-obvious data structure for this ADT
- But first let's analyze some "obvious" ideas for n data items
- All times worst-case; assume arrays "have room"

data	insert algorithm / time	deleteMin algorithm / time		
unsorted array	add at end	$O(1)$	search	$O(n)$
unsorted linked list	add at front	$O(1)$	search	$O(n)$
sorted circular array	search / shift	$O(n)$	move front	$O(1)$
sorted linked list	put in right place $O(n)$	remove at front	$O(1)$	
binary search tree	put in right place $O(n)$	leftmost	$O(n)$	
AVL tree	put in right place $O(\log n)$ leftmost	$O(\log n)$		
Autumn 2016	CSE373: Data Structures \& Algorithms	6		

Our data structure: the Binary Heap

A binary min-heap (or just binary heap or just heap) has:

- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is less than the priority of its parent
- Not a binary search tree

So:

- Where is the most important item?
- What is the height of a heap with n items?

Autumn 2016
CSE373: Data Structures \& Algorithms

Operations: basic idea

- deleteMin:

1. Remove root node
2. Move right-most node in last row to root to restore structure property
3. "Percolate down" to restore heap property
insert:
4. Put new node in next position on bottom row to restore structure property
5. "Percolate up" to restore heap property

Overall strategy

- Preserve structure property
- Break and restore heap property

Autumn 2016 CSE373: Data Structures \& Algorithms

deleteMin: Keep the Structure Property

- We now have a "hole" at the root
- Need to fill the hole with another value
- Keep structure property: When we are done, the tree will have one less node and must still be complete

- Pick the last node on the bottom row of the tree and move it to the "hole"

Percolate down:

- Keep comparing priority of item with both children
- If priority is less important, swap with the most important child and go down one level
- Done if both children are less important than the item or we've reached a leaf node

insert

- Add a value to the tree
- Afterwards, structure and heap properties must still be correct

Judging the array implementation

Plusses:

- Non-data space: just index 0 and unused space on right
- In conventional tree representation, one edge per node (except for root), so $n-1$ wasted space (like linked lists)
- Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index size

Minuses:

- Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: "this is how people do it"

Autumn 2016
CSE373: Data Structures \& Algorithm

Example

1. insert: $16,32,4,67,105,43,2$
2. deleteMin

Autumn 2016
CSE373: Data Structures \& Algorithms
22

Example

1. insert: $16,32,4,67,105,43,2$
2. deleteMin

Autumn 2016
CSE373: Data Structures \& Algorithms

Example

1. insert: $16,32,4,67,105,43,2$
2. deleteMin

Autumn 2016
CSE373: Data Structures \& Algorithms

Example

1. insert: $16,32,4,67,105,43,2$
2. deleteMin

Autumn 2016

Exercise

1. insert: $16,32,4,67,105,43,2$
2. deleteMin

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline & \mathbf{2} & \mathbf{3 2} & \mathbf{4} & \mathbf{6 7} & \mathbf{1 0 5} & \mathbf{4 3} & \mathbf{1 6} \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array}
$$

Autumn 2016
CSE373: Data Structures \& Algorithms
28

Other operations

- decreaseKey: given pointer to object in priority queue (e.g., its array index), lower its priority value by p
- Change priority and percolate up
- increaseKey: given pointer to object in priority queue (e.g., its array index), raise its priority value by p
- Change priority and percolate down
- remove: given pointer to object in priority queue (e.g., its array index), remove it from the queue
- decreaseKey with $p=\infty$, then deleteMin

Running time for all these operations?
Autumn 2016
CSE373: Data Structures \& Algorithms 29

Build Heap

- Suppose you have n items to put in a new (empty) priority queue - Call this operation buildHeap
- n inserts works
- Only choice if ADT doesn't provide buildHeap explicitly
- O($n \log n$)
- Why would an ADT provide this unnecessary operation? - Convenience
- Efficiency: an $O(n)$ algorithm called Floyd's Method
- Common issue in ADT design: how many specialized operations

Autumn 2016
CSE373: Data Structures \& Algorithm
30

Floyd's Method

1. Use n items to make any complete tree you want

- That is, put them in array indices $1, \ldots, n$

2. Treat it as a heap and fix the heap-order property

- Bottom-up: leaves are already in heap order, work up toward the root one level at a time
void buildHeap() \{
for (i = size/2; i>0; i--)
val = arr[i];
hole $=$ percolateDown (i,val); arr[hole] = val;
\}

Example

Example

- Percolate down as necessary (steps 4a and 4b)

Autumn 2016
CSE373: Data Structures \& Algorithms

But is it right?

Correctness

```
void buildHeap()
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
            }
}
```

Loop Invariant: For all $\mathbf{j}>\mathbf{i}$, arr $[j]$ is less than its children

- True initially: If $j>\operatorname{size} / 2$, then j is a leaf
- Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants
So after the loop finishes, all nodes are less than their children
Autumn 2016 CSE373: Data Structures \& Algorithms

Efficiency

```
void buildHeap() {
    for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
        }
}
```

Easy argument: buildHeap is $O(n \log n)$ where n is size

- size/2 loop iterations
- Each iteration does one percolateDown, each is $O(\log n)$

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

Efficiency

```
void buildHeap() {
        for(i = size/2; i>0; i--) {
        val = arr[i];
        hole = percolateDown(i,val);
        arr[hole] = val;
        }
    }
```

Better argument: buildHeap is $O(n)$ where n is size

- size/2 total loop iterations: $O(n)$
- $1 / 2$ the loop iterations percolate at most 1 step
- $1 / 4$ the loop iterations percolate at most 2 steps

- $1 / 8$ the loop iterations percolate at most 3 steps
-
- $((1 / 2)+(2 / 4)+(3 / 8)+(4 / 16)+(5 / 32)+\ldots)<2$ (page 4 of Weiss)
- So at most 2* (size/2) total percolate steps: $O(n)$

Autumn 2016 CSE373: Data Structures \& Algorithms
LeSSOnS from bui ldHeap

- Without buildHeap, our ADT already let clients implement their
own in O(n log n) worst case
- By providing a specialized operation internal to the data structure
(with access to the internal data), we can do $O(n)$ worst case
- Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
- Correctness:
- Non-trivial inductive proof using loop invariant
- Efficiency:
- First analysis easily proved it was O(n log $n)$
- Tighter analysis shows same algorithm is $O(n)$

Exercise: Build the Heap using
 Floyd's method

Autumn 2016
CSE373: Data Structures \& Algorithm

