

The plan

Last lecture:

- Disjoint sets
- The UNION-FIND ADT for disjoint sets

Today's lecture:

- Basic implementation of the UNION-FIND ADT with "up trees"
- Optimizations that make the implementation much faster

Union-Find ADT

- Given an unchanging set S, create an initial partition of a set - Typically each item in its own subset: $\{a\},\{b\},\{c\}$, .
- Give each subset a "name" by choosing a representative element
- Operation find takes an element of S and returns the representative element of the subset it is in
- Operation union takes two subsets and (permanently) makes one larger subset
- A different partition with one fewer set
- Affects result of subsequent find operations
- Choice of representative element up to implementation

Autumn 2016 CSE 373: Data Structures \& Algorithms

Find

find(x):

- Assume we have $O(1)$ access to each node
- Will use an array where index i holds node i
- Start at \mathbf{x} and follow parent pointers to root
- Return the root
find(6) $=7$

Simple implementation

- If set elements are contiguous numbers (e.g., $1,2, \ldots, n$), use an array of length n called up
- Starting at index 1 on slides
- Put in array index of parent, with 0 (or -1, etc.) for a root
- Example
(1) 2
(3) (4) (5) 7

1	2	3	4	5	6	7	
	0	0	0	0	0	0	0

- Example:

If set elements are not contiguous numbers, could have a separate dictionary to map elements (keys) to numbers (values)
Autumn 2016 CSE 373: Data Structures \& Algorithms

Two key optimizations

1. Improve union so it stays $O(1)$ but makes find $O(\log n)$

- So m finds and $n-1$ unions is in $O(m \log n+n)$
- Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster

- Make m finds and $n-1$ unions almost in $O(m+n)$
- Path-compression: connect directly to root during finds

Union-by-size

Union-by-size:

- Always point the smaller (total \# of nodes) tree to the root of the larger tree

Nice trick

Actually we do not need a second array...

- Instead of storing 0 for a root, store negation of size
- So up value <0 means a root

General analysis

- Showing one worst-case example is now good is not a proof that the worst-case has improved
- So let's prove:
- union is still $O(1)$ - this is "obvious"
- find is now $O(\log n)$
- Claim: If we use union-by-size, an up-tree of height h has at least 2^{h} nodes
- Proof by induction on h...

Autumn 2016
CSE 373: Data Structures \& Algorithms 17

Array implementation

Keep the size (number of nodes in a second array)

- Or have one array of objects with two fields
2

\qquad
(2)

Autumn 2016
CSE 373: Data Structures \& Algorithms

The Bad case? Now a Great case...
(1) (2) (3) (n) union(2,1)

CSE 373: Data Structures \& Algorithms

Exponential number of nodes

$P(h)=$ With union-by-size, up-tree of height h has at least 2^{h} nodes
Proof by induction on h...

- Base case: $h=0$: The up-tree has 1 node and $2^{0}=1$
- Inductive case: Assume $\mathrm{P}(h)$ and show $\mathrm{P}(h+1)$
- A height $h+1$ tree T has at least one height h child T1
- T1 has at least 2^{h} nodes by induction
- And T has at least as many nodes not in T1 than in T1
- Else union-by-size would have
had T point to T 1 , not T 1 point to $\mathrm{T}(!!)$
- So total number of nodes is at least $2^{h}+2^{h}=2^{h+1} \mathrm{~T}_{1}^{h}$

Autumn 2016
CSE 373: Data Structures \& Algorithms
18

The key idea

Intuition behind the proof: No one child can have more than half the nodes

So, as usual, if number of nodes is exponential in height, then height is logarithmic in number of nodes

So find is $O(\log n)$

The new worst case

n/2 Unions-by-size

n/4 Unions-by-size

What about union-by-height

We could store the height of each root rather than size

- Still guarantees logarithmic worst-case find
- Proof left as an exercise if interested
- But does not work well with our next optimization
- Maintaining height becomes inefficient, but maintaining size still easy

Two key optimizations

1. Improve union so it stays $O(1)$ but makes find $O(\log n)$

Path compression

- Simple idea: As part of a find, change each encountered node's parent to point directly to root
- So m finds and $n-1$ unions is $O(m \log n+n)$
- Union-by-size: connect smaller tree to larger tree

2. Improve find so it becomes even faster

- Make m finds and $n-1$ unions almost $O(m+n)$
- Path-compression: connect directly to root during finds descendants)

So, how fast is it?

A single worst-case find could be $O(\log n)$

- But only if we did a lot of worst-case unions beforehand
- And path compression will make future finds faster

Turns out the amortized worst-case bound is much better than $O(\log n)$

- We won't prove it - see text if curious
- But we will understand it:
- How it is almost $O(1)$
- Because total for m finds and $n-1$ unions is almost $O(m+n)$

Almost linear

- Turns out total time for m finds and $n-1$ unions is $O\left((m+n) \cdot\left(\log ^{*}(m+n)\right)\right.$
- Remember, if $m+n<2^{65536}$ then $\log ^{*}(m+n)<5$ so effectively we have $\mathrm{O}(m+n)$
- Because log* grows soooo slowly
- For all practical purposes, amortized bound is constant, i.e., cost of find is constant, total cost for m finds is linear
- We say "near linear" or "effectively linear"
- Need union-by-size and path-compression for this bound
- Path-compression changes height but not weight, so they interact well
- As always, asymptotic analysis is separate from "coding it up"

Autumn 2016
CSE 373: Data Structures \& Algorithms
28

Curious about the Proof?

See the textbook!

