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CSE373: Data Structures and Algorithms

Disjoint Sets and 
the UNION-FIND ADT

Steve Tanimoto

Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington.  
Thank you to all who have contributed!

Where we are

Last lecture:

• Hashing and collision resolution

Today: 

• Disjoint sets

• The UNION-FIND  ADT for disjoint sets

Next lecture:

• Basic implementation of the UNION-FIND ADT with “up trees”

• Optimizations that make the implementation much faster
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Disjoint sets

• A set is a collection of elements (no-repeats) 

• In computer science, two sets are said to be disjoint if they have 
no element in common. 

• S1  S2 = 

• For example, {1, 2, 3} and {4, 5, 6} are disjoint sets.

• For example, {x, y, z} and {t, u, x} are not disjoint.
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Partitions

A partition P of a set S is a set of sets {S1,S2,…,Sn} such that every 
element of S is in exactly one Si .

Put another way:

S1  S2  . . .  Sk = S

i  j implies Si  Sj =  (sets are pairwise disjoint)

Example:

– Let S be {a,b,c,d,e}

– One partition: {a}, {d,e}, {b,c}

– Another partition: {a,b,c}, , {d}, {e}

– A third: {a,b,c,d,e}

– Not a partition: {a,b,d}, {c,d,e} …. element d appears twice

– Not a partition of S: {a,b}, {e,c} …. missing element d
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Binary relations

• S x S is the set of all pairs of elements of S (cartesian product)

– Example: If S = {a,b,c}

then S x S = {(a,a),(a,b),(a,c),(b,a),(b,b),(b,c), (c,a),(c,b),(c,c)}

• A binary relation R on a set S is any subset of S x S

– i.e., a collection of ordered pairs of elements of S.

– Write R(x,y) to mean (x,y) is in the relation.

– (Unary, ternary, quaternary, … relations defined similarly)

• Examples for S = people-in-this-room

– Sitting-next-to-each-other relation

– First-sitting-right-of-second relation

– Went-to-same-high-school relation

– First-is-younger-than-second relation
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Properties of binary relations
• A relation R over set S is reflexive means R(x, x) for all x in S

– e.g., The relation “” on the set of integers {1, 2, 3} is 

{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} 

It is reflexive because (1, 1), (2, 2), (3, 3) are in this relation.

• A relation R on a set S is symmetric if and only if for any x and y in S, 
whenever (x, y) is in R , (y, x) is in R . 
– e.g., The relation “=” on the set of integers {1, 2, 3} is 

{(1, 1) , (2, 2) (3, 3) } and it is symmetric.

– The relation "being acquainted with" on a set of people is symmetric.

• A binary relation R over set S is transitive means: 

If R(x, y) and R(y, z) then R(x, z) for all a,b,c in S
– e.g., The relation “” on the set of integers {1, 2, 3} is transitive, because for 

(1, 2) and (2, 3) in “”, (1, 3) is also in “” (and similarly for the others)
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Equivalence relations

• A binary relation R is an equivalence relation if R is 

reflexive, symmetric, and transitive

• Examples

– Same gender

– Connected roads in the world

– "Is equal to" on the set of real numbers

– "Has the same birthday as" on the set of all people

– …
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Punch-line
• Equivalence relations give rise to partitions.

• Every partition induces an equivalence relation

• Every equivalence relation induces a partition

• Suppose P = {S1,S2,…,Sn} is a partition

– Define R(x,y) to mean x and y are in the same Si

• R is an equivalence relation

• Suppose R is an equivalence relation over S

– Consider a set of sets S1,S2,…,Sn where 

(1) x and y are in the same Si if and only if R(x,y)

(2) Every x is in some Si

• This set of sets is a partition
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Example

• Let S be {a,b,c,d,e}

• One partition: {a,b,c}, {d}, {e}

• The corresponding equivalence relation:

(a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (d,d), (e,e)
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The Union-Find ADT
• The union-find ADT (or "Disjoint Sets" or "Dynamic Equivalence 

Relation") keeps track of a set of elements partitioned into a 
number of disjoint subsets.

• Many uses (which is why an ADT taught in CSE 373):

– Road/network/graph connectivity (will see this again)

• “connected components” e.g., in social network

– Partition an image by connected-pixels-of-similar-color

– Type inference in programming languages

• Not as common as dictionaries, queues, and stacks, but valuable 
because implementations are very fast, so when applicable can 
provide big improvements
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The Union-Find ADT
• The union-find ADT (or "Disjoint Sets" or "Dynamic Equivalence 

Relation") keeps track of a set of elements partitioned into a number of 
disjoint subsets.

• Many uses (which is why an ADT taught in CSE 373):

– Road/network/graph connectivity (will see this again)

• “connected components” e.g., in social network

–– Partition an image by Partition an image by connectedconnected--pixelspixels--ofof--similarsimilar--color color (possible (possible 
optional programming problem)optional programming problem)

– Type inference in programming languages

• Not as common as dictionaries, queues, and stacks, but valuable 
because implementations are very fast, so when applicable can 
provide big improvements
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Connected Components of an Image

Autumn 2016 12CSE 373: Data Structures & Algorithms

gray tone image         binary image           cleaned up             components
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Union-Find Operations

• Given an unchanging set S, create an initial partition of a set

– Typically each item in its own subset: {a}, {b}, {c}, …

– Give each subset a “name” by choosing a representative 
element

• Operation find takes an element of S and returns the 
representative element of the subset it is in

• Operation union takes two subsets and (permanently) makes 
one larger subset

– A different partition with one fewer set
– Affects result of subsequent find operations

– Choice of representative element up to implementation
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Example

• Let S = {1,2,3,4,5,6,7,8,9}

• Let initial partition be (will highlight representative elements red)

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}
• union(2,5):

{1}, {2, 5}, {3}, {4}, {6}, {7}, {8}, {9}
• find(4) = 4, find(2) = 2, find(5) = 2

• union(4,6), union(2,7)

{1}, {2, 5, 7}, {3}, {4, 6}, {8}, {9}
• find(4) = 6, find(2) = 2, find(5) = 2

• union(2,6)

{1}, {2, 4, 5, 6, 7}, {3}, {8}, {9}
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No other operations

• All that can “happen” is sets get unioned

– No “un-union” or “create new set” or …

• As always: trade-offs 

– Implementations will exploit this small ADT

• Surprisingly useful ADT

– But not as common as dictionaries or priority queues
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Example application: maze-building

• Build a random maze by erasing edges

– Possible to get from anywhere to anywhere

• Including “start” to “finish”

– No loops possible without backtracking

• After a “bad turn” have to “undo”
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Maze building

Pick start edge and end edge
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Start

End

Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get 
from start to finish
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Start

End
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Problems with this approach

1. How can you tell when there is a path from start to finish?

– We do not really have an algorithm yet

2. We could have cycles, which a “good” maze avoids

– Want one solution and no cycles
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Start

End

Revised approach
• Consider edges in random order (i.e. pick an edge)

• Only delete an edge if it introduces no cycles (how? TBD)

• When done, we will have a way to get from any place to any 
other place (including from start to end points)
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Start

End

Cells and edges

• Let’s number each cell

– 36 total for 6 x 6

• An (internal) edge (x,y) is the line between cells x and y 

– 60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), …
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Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

The trick

• Partition the cells into disjoint  sets
– Two cells in same set if they are “connected”

– Initially every cell is in its own subset

• If removing an edge would connect two different subsets:
– then remove the edge and union the subsets

– else leave the edge because removing it makes a cycle
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Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

The algorithm
• P = disjoint sets of connected cells 

initially each cell in its own 1-element set

• E = set of edges not yet processed, initially all (internal) edges

• M = set of edges kept in maze (initially empty)

while P has more than one set {

– Pick a random edge (x,y) to remove from E
– u = find(x)

– v = find(y)

– if u==v

add (x,y) to M // same subset, do not remove edge, do not create cycle

else 
union(u,v) // connect subsets, do not put edge in M

}

Add remaining members of E to M, then output M as the maze
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Example
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Pick edge (8,14)

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
33,34,35,36}

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36
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Example
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P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32,33,34,35,36}

Find(8) = 7
Find(14) = 20

Union(7,20)

P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32,33,34,35,36}

Example: Add edge to M step
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P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
33,34,35,36}

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Pick edge (19,20)
Find (19) = 7 
Find (20) = 7
Add (19,20) to M

At the end

• Stop when P has one set (i.e. all cells connected)

• Suppose green edges are already in M and black edges were 
not yet picked

– Add all black edges to M
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Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,3,4,5,6,7,… 36}

Done! 

A data structure for the union-find ADT

• Start with an initial partition of n subsets

– Often 1-element sets, e.g., {1}, {2}, {3}, …, {n}

• May have any number of find operations 

• May have up to n-1 union operations in any order

– After n-1 union operations, every find returns same 1 set
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Teaser: the up-tree data structure

• Tree structure with:

– No limit on branching factor 

– References from children to parent

• Start with forest of 1-node trees

• Possible forest after several unions:

– Will use roots for

set names
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