

Where we are

Last lecture:

- Hashing and collision resolution

Today:

- Disjoint sets
- The UNION-FIND ADT for disjoint sets

Next lecture:

- Basic implementation of the UNION-FIND ADT with "up trees"
- Optimizations that make the implementation much faster

Partitions

A partition P of a set S is a set of sets $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ such that every element of S is in exactly one S_{i}.

Put another way:
$\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \ldots \cup \mathrm{~S}_{\mathrm{k}}=\mathrm{S}$
$\mathrm{i} \neq \mathrm{j}$ implies $\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing$ (sets are pairwise disjoint)
Example:

- Let S be $\{a, b, c, d, e\}$
- One partition: \{a\}, \{d,e\}, \{b,c\}
- Another partition: $\{a, b, c\}, \varnothing,\{d\},\{e\}$
- A third: $\{a, b, c, d, e\}$
- Not a partition: $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}, \mathrm{e}\} . .$. element d appears twice
- Not a partition of $S:\{a, b\},\{e, c\} \ldots$ missing element d

Autumn 2016
CSE 373: Data Structures \& Algorithms

Properties of binary relations

- A relation R over set S is reflexive means $R(\mathrm{x}, \mathrm{x})$ for all x in S
- e.g., The relation " \leq " on the set of integers $\{1,2,3\}$ is
$\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$
It is reflexive because $(1,1),(2,2),(3,3)$ are in this relation.
- A relation R on a set S is symmetric if and only if for any x and y in S, whenever (x, y) is in $R,(y, x)$ is in R.
- e.g., The relation " $=$ " on the set of integers $\{1,2,3\}$ is
$\{(1,1),(2,2)(3,3)\}$ and it is symmetric.
- The relation "being acquainted with" on a set of people is symmetric.
- A binary relation R over set S is transitive means:

$$
\text { If } R(\mathrm{x}, \mathrm{y}) \text { and } R(\mathrm{y}, \mathrm{z}) \text { then } R(\mathrm{x}, \mathrm{z}) \text { for all } \mathrm{a}, \mathrm{~b}, \mathrm{c} \text { in } S
$$

- e.g., The relation " \leq " on the set of integers $\{1,2,3\}$ is transitive, because for $(1,2)$ and $(2,3)$ in " \leq ", $(1,3)$ is also in " \leq " (and similarly for the others)

Autumn 2016 CSE 373: Data Structures \& Algorithms

Equivalence relations

- A binary relation R is an equivalence relation if R is reflexive, symmetric, and transitive
- Examples
- Same gender
- Connected roads in the world
- "Is equal to" on the set of real numbers
- "Has the same birthday as" on the set of all people
- ...

Autumn 2016

Example

- Let S be $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
- One partition: $\{a, b, c\},\{d\},\{e\}$
- The corresponding equivalence relation:
$(a, a),(b, b),(c, c),(a, b),(b, a),(a, c),(c, a),(b, c),(c, b),(d, d),(e, e)$
- The union-find ADT (or "Disjoint Sets" or "Dynamic Equivalence Relation") keeps track of a set of elements partitioned into a number of disjoint subsets.
- Many uses (which is why an ADT taught in CSE 373):
- Road/network/graph connectivity (will see this again)
- "connected components" e.g., in social network
- Partition an image by connected-pixels-of-similar-color (possible optional programming problem)
- Type inference in programming languages
- Not as common as dictionaries, queues, and stacks, but valuable because implementations are very fast, so when applicable can provide big improvements

Autumn 2016
CSE 373: Data Structures \& Algorithm 11

Punch-line

- Equivalence relations give rise to partitions.
- Every partition induces an equivalence relation
- Every equivalence relation induces a partition
- Suppose $P=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ is a partition
- Define $R(\mathrm{x}, \mathrm{y})$ to mean x and y are in the same S_{i}
- R is an equivalence relation
- Suppose R is an equivalence relation over S
- Consider a set of sets $S_{1}, S_{2}, \ldots, S_{n}$ where
(1) x and y are in the same S_{i} if and only if $R(x, y)$
(2) Every x is in some S_{i}
- This set of sets is a partition

Autumn 2016
CSE 373: Data Structures \& Algorithms

The Union-Find ADT

- The union-find ADT (or "Disjoint Sets" or "Dynamic Equivalence Relation") keeps track of a set of elements partitioned into a number of disjoint subsets.
- Many uses (which is why an ADT taught in CSE 373): - Road/network/graph connectivity (will see this again) - "connected components" e.g., in social network
- Partition an image by connected-pixels-of-similar-color
- Type inference in programming languages
- Not as common as dictionaries, queues, and stacks, but valuable because implementations are very fast, so when applicable can provide big improvements

Union-Find Operations

- Given an unchanging set S, create an initial partition of a set
- Typically each item in its own subset: \{a\}, \{b\}, \{c\}, .
- Give each subset a "name" by choosing a representative element
- Operation find takes an element of S and returns the representative element of the subset it is in
- Operation union takes two subsets and (permanently) makes one larger subset
- A different partition with one fewer set
- Affects result of subsequent find operations
- Choice of representative element up to implementation

Autumn 2016 CSE 373: Data Structures \& Algorithms 13

Example

- Let $S=\{1,2,3,4,5,6,7,8,9\}$
- Let initial partition be (will highlight representative elements red)
\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7, \{ \{3, \{9\}
- union(2,5):
$\{1\},\{2,5\},\{3,\{4\},\{6\},\{7,\{8\},\{9\}$
- $\operatorname{find}(4)=4, \operatorname{find}(2)=2, \operatorname{find}(5)=2$
- union(4,6), union $(2,7)$
$\{1\},\{2,5,7\},\{3\},\{4,6\},\{8\},\{9\}$
- $\operatorname{find}(4)=6, \operatorname{find}(2)=2, \operatorname{find}(5)=2$
- union $(2,6)$
$\{1\},\{2,4,5,6,7\},\{3\},\{8\},\{9\}$

Autumn 2016
CSE 373: Data Structures \& Algorithms

Example application: maze-building

- Build a random maze by erasing edges

- Possible to get from anywhere to anywhere
- Including "start" to "finish"
- No loops possible without backtracking
- After a "bad turn" have to "undo"

Autumn 2016
CSE 373: Data Structures \& Algorithms

Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get from start to finish

Autumn 2016
CSE 373: Data Structures \& Algorithms

Problems with this approach

1. How can you tell when there is a path from start to finish?

- We do not really have an algorithm yet

2. We could have cycles, which a "good" maze avoids

- Want one solution and no cycles

Autumn 2016 CSE 373: Data Structures \& Algorithms

Revised approach

- Consider edges in random order (i.e. pick an edge)
- Only delete an edge if it introduces no cycles (how? TBD)
- When done, we will have a way to get from any place to any other place (including from start to end points)

Autumn 2016
CSE 373: Data Structures \& Algorithms

The trick

- Partition the cells into disjoint sets
- Two cells in same set if they are "connected"
- Initially every cell is in its own subset
- If removing an edge would connect two different subsets:
- then remove the edge and union the subsets
- else leave the edge because removing it makes a cycle

Start

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Autumn 2016 CSE 373: Data Structures \& Algorithms

Example
Pick edge $(8,14)$

P
$\{1,2,7,8,9,13,19\}$
$\{1,2,1,8$
$\{3\}$
$\{4\}$
$\{5\}$ $\{6\}$
$\{10\}$
$\left\{\begin{array}{l}\{10\} \\ \{11,17\}\end{array}\right.$
$\{11,17\}$

$$
\begin{aligned}
& \{14,20,26,27\} \\
& \{14, \underline{2}
\end{aligned}
$$

$$
\begin{aligned}
& \{14,20,26,27\} \\
& \{15, \underline{16}, 21\}
\end{aligned}
$$

$$
\begin{aligned}
& \{18\} \\
& \{25\}
\end{aligned}
$$

$$
\begin{aligned}
& \{25\} \\
& \{28\} \\
& \{31\}
\end{aligned}
$$

$$
\begin{aligned}
& \{31\} \\
& \{22,23,24,29,30,32
\end{aligned}
$$

$$
33,34,35,36\}
$$

Autumn 2016
CSE 373: Data Structures \& Algorithms

Example		
P		P
\{1,2, $7,8,9,13,19\}$		\{1,2,7, 8
\{3\}		\{3\}
\{4\}		\{4\}
\{5]	$\operatorname{Find}(8)=7$	\{5\}
$\{6\}$	$\text { Find }(14)=20$	\{6\}
\{10\}		$\{10\}$
\{11,17\}	Union(7,20)	\{11,17\}
\{12\}	$\xrightarrow{ }$	\{12 ${ }^{15}$
\{14,20,26,27\}		\{15,16,21
$\{15,16,21\}$		\{18\}
\{18\}		\{25\}
\{25\}		\{28\}
\{28\}		\{31\}
\{31\}		\{22,23,
$\{22,23,24,29,30,32,33, \underline{34}, 35,36\}$		
Autumn 2016	CSE 373: Data Structure	Algorithms

At the end

- Stop when P has one set (i.e. all cells connected)
- Suppose green edges are already in M and black edges were not yet picked
- Add all black edges to M

P
$\{1,2,3,4,5,6, \underline{7}, \ldots 36\}$

Start | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |

7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

- Tree structure with:
- No limit on branching factor
- References from children to parent
- Start with forest of 1-node trees
(1)
(2)
(3)
(4)
(6) (7)
- Possible forest after several unions:
- Will use roots for set names

A data structure for the union-find ADT

- Start with an initial partition of n subsets
- Often 1-element sets, e.g., $\{1\},\{2\},\{3\}, \ldots,\{n\}$
- May have any number of find operations
- May have up to $n-1$ union operations in any order
- After n - 1 union operations, every find returns same 1 set

Example: Add edge to M step

Autumn 2016 CSE 373: Data Structures \& Algorithms \qquad

