
10/25/2016

1

CSE373: Data Structures and Algorithms

Disjoint Sets and
the UNION-FIND ADT

Steve Tanimoto

Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Where we are

Last lecture:

• Hashing and collision resolution

Today:

• Disjoint sets

• The UNION-FIND ADT for disjoint sets

Next lecture:

• Basic implementation of the UNION-FIND ADT with “up trees”

• Optimizations that make the implementation much faster

Autumn 2016 2CSE 373: Data Structures & Algorithms

Disjoint sets

• A set is a collection of elements (no-repeats)

• In computer science, two sets are said to be disjoint if they have
no element in common.

• S1  S2 = 

• For example, {1, 2, 3} and {4, 5, 6} are disjoint sets.

• For example, {x, y, z} and {t, u, x} are not disjoint.

Autumn 2016 3CSE 373: Data Structures & Algorithms

Partitions

A partition P of a set S is a set of sets {S1,S2,…,Sn} such that every
element of S is in exactly one Si .

Put another way:

S1  S2  . . .  Sk = S

i  j implies Si  Sj =  (sets are pairwise disjoint)

Example:

– Let S be {a,b,c,d,e}

– One partition: {a}, {d,e}, {b,c}

– Another partition: {a,b,c}, , {d}, {e}

– A third: {a,b,c,d,e}

– Not a partition: {a,b,d}, {c,d,e} …. element d appears twice

– Not a partition of S: {a,b}, {e,c} …. missing element d

Autumn 2016 4CSE 373: Data Structures & Algorithms

Binary relations

• S x S is the set of all pairs of elements of S (cartesian product)

– Example: If S = {a,b,c}

then S x S = {(a,a),(a,b),(a,c),(b,a),(b,b),(b,c), (c,a),(c,b),(c,c)}

• A binary relation R on a set S is any subset of S x S

– i.e., a collection of ordered pairs of elements of S.

– Write R(x,y) to mean (x,y) is in the relation.

– (Unary, ternary, quaternary, … relations defined similarly)

• Examples for S = people-in-this-room

– Sitting-next-to-each-other relation

– First-sitting-right-of-second relation

– Went-to-same-high-school relation

– First-is-younger-than-second relation

Autumn 2016 5CSE 373: Data Structures & Algorithms

Properties of binary relations
• A relation R over set S is reflexive means R(x, x) for all x in S

– e.g., The relation “” on the set of integers {1, 2, 3} is

{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

It is reflexive because (1, 1), (2, 2), (3, 3) are in this relation.

• A relation R on a set S is symmetric if and only if for any x and y in S,
whenever (x, y) is in R , (y, x) is in R .
– e.g., The relation “=” on the set of integers {1, 2, 3} is

{(1, 1) , (2, 2) (3, 3) } and it is symmetric.

– The relation "being acquainted with" on a set of people is symmetric.

• A binary relation R over set S is transitive means:

If R(x, y) and R(y, z) then R(x, z) for all a,b,c in S
– e.g., The relation “” on the set of integers {1, 2, 3} is transitive, because for

(1, 2) and (2, 3) in “”, (1, 3) is also in “” (and similarly for the others)

Autumn 2016 6CSE 373: Data Structures & Algorithms

10/25/2016

2

Equivalence relations

• A binary relation R is an equivalence relation if R is

reflexive, symmetric, and transitive

• Examples

– Same gender

– Connected roads in the world

– "Is equal to" on the set of real numbers

– "Has the same birthday as" on the set of all people

– …

Autumn 2016 7CSE 373: Data Structures & Algorithms

Punch-line
• Equivalence relations give rise to partitions.

• Every partition induces an equivalence relation

• Every equivalence relation induces a partition

• Suppose P = {S1,S2,…,Sn} is a partition

– Define R(x,y) to mean x and y are in the same Si

• R is an equivalence relation

• Suppose R is an equivalence relation over S

– Consider a set of sets S1,S2,…,Sn where

(1) x and y are in the same Si if and only if R(x,y)

(2) Every x is in some Si

• This set of sets is a partition
Autumn 2016 8CSE 373: Data Structures & Algorithms

Example

• Let S be {a,b,c,d,e}

• One partition: {a,b,c}, {d}, {e}

• The corresponding equivalence relation:

(a,a), (b,b), (c,c), (a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (d,d), (e,e)

Autumn 2016 9CSE 373: Data Structures & Algorithms

The Union-Find ADT
• The union-find ADT (or "Disjoint Sets" or "Dynamic Equivalence

Relation") keeps track of a set of elements partitioned into a
number of disjoint subsets.

• Many uses (which is why an ADT taught in CSE 373):

– Road/network/graph connectivity (will see this again)

• “connected components” e.g., in social network

– Partition an image by connected-pixels-of-similar-color

– Type inference in programming languages

• Not as common as dictionaries, queues, and stacks, but valuable
because implementations are very fast, so when applicable can
provide big improvements

Autumn 2016 10CSE 373: Data Structures & Algorithms

The Union-Find ADT
• The union-find ADT (or "Disjoint Sets" or "Dynamic Equivalence

Relation") keeps track of a set of elements partitioned into a number of
disjoint subsets.

• Many uses (which is why an ADT taught in CSE 373):

– Road/network/graph connectivity (will see this again)

• “connected components” e.g., in social network

–– Partition an image by Partition an image by connectedconnected--pixelspixels--ofof--similarsimilar--color color (possible (possible
optional programming problem)optional programming problem)

– Type inference in programming languages

• Not as common as dictionaries, queues, and stacks, but valuable
because implementations are very fast, so when applicable can
provide big improvements

Autumn 2016 11CSE 373: Data Structures & Algorithms

Connected Components of an Image

Autumn 2016 12CSE 373: Data Structures & Algorithms

gray tone image binary image cleaned up components

10/25/2016

3

Union-Find Operations

• Given an unchanging set S, create an initial partition of a set

– Typically each item in its own subset: {a}, {b}, {c}, …

– Give each subset a “name” by choosing a representative
element

• Operation find takes an element of S and returns the
representative element of the subset it is in

• Operation union takes two subsets and (permanently) makes
one larger subset

– A different partition with one fewer set
– Affects result of subsequent find operations

– Choice of representative element up to implementation

Autumn 2016 13CSE 373: Data Structures & Algorithms

Example

• Let S = {1,2,3,4,5,6,7,8,9}

• Let initial partition be (will highlight representative elements red)

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}
• union(2,5):

{1}, {2, 5}, {3}, {4}, {6}, {7}, {8}, {9}
• find(4) = 4, find(2) = 2, find(5) = 2

• union(4,6), union(2,7)

{1}, {2, 5, 7}, {3}, {4, 6}, {8}, {9}
• find(4) = 6, find(2) = 2, find(5) = 2

• union(2,6)

{1}, {2, 4, 5, 6, 7}, {3}, {8}, {9}

Autumn 2016 14CSE 373: Data Structures & Algorithms

No other operations

• All that can “happen” is sets get unioned

– No “un-union” or “create new set” or …

• As always: trade-offs

– Implementations will exploit this small ADT

• Surprisingly useful ADT

– But not as common as dictionaries or priority queues

Autumn 2016 15CSE 373: Data Structures & Algorithms

Example application: maze-building

• Build a random maze by erasing edges

– Possible to get from anywhere to anywhere

• Including “start” to “finish”

– No loops possible without backtracking

• After a “bad turn” have to “undo”

Autumn 2016 16CSE 373: Data Structures & Algorithms

Maze building

Pick start edge and end edge

Autumn 2016 17CSE 373: Data Structures & Algorithms

Start

End

Repeatedly pick random edges to delete

One approach: just keep deleting random edges until you can get
from start to finish

Autumn 2016 18CSE 373: Data Structures & Algorithms

Start

End

10/25/2016

4

Problems with this approach

1. How can you tell when there is a path from start to finish?

– We do not really have an algorithm yet

2. We could have cycles, which a “good” maze avoids

– Want one solution and no cycles

Autumn 2016 19CSE 373: Data Structures & Algorithms

Start

End

Revised approach
• Consider edges in random order (i.e. pick an edge)

• Only delete an edge if it introduces no cycles (how? TBD)

• When done, we will have a way to get from any place to any
other place (including from start to end points)

Autumn 2016 20CSE 373: Data Structures & Algorithms

Start

End

Cells and edges

• Let’s number each cell

– 36 total for 6 x 6

• An (internal) edge (x,y) is the line between cells x and y

– 60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), …

Autumn 2016 21CSE 373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

The trick

• Partition the cells into disjoint sets
– Two cells in same set if they are “connected”

– Initially every cell is in its own subset

• If removing an edge would connect two different subsets:
– then remove the edge and union the subsets

– else leave the edge because removing it makes a cycle

Autumn 2016 22CSE 373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

The algorithm
• P = disjoint sets of connected cells

initially each cell in its own 1-element set

• E = set of edges not yet processed, initially all (internal) edges

• M = set of edges kept in maze (initially empty)

while P has more than one set {

– Pick a random edge (x,y) to remove from E
– u = find(x)

– v = find(y)

– if u==v

add (x,y) to M // same subset, do not remove edge, do not create cycle

else
union(u,v) // connect subsets, do not put edge in M

}

Add remaining members of E to M, then output M as the maze

Autumn 2016 23CSE 373: Data Structures & Algorithms

Example

Autumn 2016 24CSE 373: Data Structures & Algorithms

Pick edge (8,14)

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
33,34,35,36}

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

10/25/2016

5

Example

Autumn 2016 25CSE 373: Data Structures & Algorithms

P
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32,33,34,35,36}

Find(8) = 7
Find(14) = 20

Union(7,20)

P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32,33,34,35,36}

Example: Add edge to M step

Autumn 2016 26CSE 373: Data Structures & Algorithms

P
{1,2,7,8,9,13,19,14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
{18}
{25}
{28}
{31}
{22,23,24,29,30,32
33,34,35,36}

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Pick edge (19,20)
Find (19) = 7
Find (20) = 7
Add (19,20) to M

At the end

• Stop when P has one set (i.e. all cells connected)

• Suppose green edges are already in M and black edges were
not yet picked

– Add all black edges to M

Autumn 2016 27CSE 373: Data Structures & Algorithms

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

P
{1,2,3,4,5,6,7,… 36}

Done! 

A data structure for the union-find ADT

• Start with an initial partition of n subsets

– Often 1-element sets, e.g., {1}, {2}, {3}, …, {n}

• May have any number of find operations

• May have up to n-1 union operations in any order

– After n-1 union operations, every find returns same 1 set

Autumn 2016 28CSE 373: Data Structures & Algorithms

Teaser: the up-tree data structure

• Tree structure with:

– No limit on branching factor

– References from children to parent

• Start with forest of 1-node trees

• Possible forest after several unions:

– Will use roots for

set names

Autumn 2016 29CSE 373: Data Structures & Algorithms

1 2 3 4 5 6 7

1

2

3

45

6

7

