
10/19/2016

1

CSE373: Data Structures and Algorithms

Hashing II: Collisions

Steve Tanimoto

Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Hash Tables: Review

• Aim for constant-time (i.e., O(1)) find, insert, and delete

– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size

– But growable as we’ll see

Autumn 2016 2CSE373: Data Structures & Algorithms

E int table-index
collision? collision

resolution

client hash table library

0

…

TableSize –1

hash table

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

– Ideas?

Autumn 2016 3CSE373: Data Structures & Algorithms

Separate Chaining

Chaining:
All keys that map to the same
table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10

Autumn 2016 4CSE373: Data Structures & Algorithms

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

Separate Chaining

Autumn 2016 5CSE373: Data Structures & Algorithms

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 / Chaining:

All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

Separate Chaining

Autumn 2016 6CSE373: Data Structures & Algorithms

0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

22 /

Chaining:

All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

10/19/2016

2

Separate Chaining

Autumn 2016 7CSE373: Data Structures & Algorithms

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

22 /

107 /

Chaining:

All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

Separate Chaining

Autumn 2016 8CSE373: Data Structures & Algorithms

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

12

107 /

22 /

Chaining:

All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

Separate Chaining

Autumn 2016 9CSE373: Data Structures & Algorithms

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

Chaining:

All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

Thoughts on chaining

• Worst-case time for find?

– Linear

– But only with really bad luck or bad hash function

– So not worth avoiding (e.g., with balanced trees at each
bucket)

• Beyond asymptotic complexity, some “data-structure
engineering” may be warranted

– Linked list vs. array vs. tree

– Move-to-front upon access

– Maybe leave room for 1 element (or 2?) in the table itself, to
optimize constant factors for the common case

• A time-space trade-off…

Autumn 2016 10CSE373: Data Structures & Algorithms

Time vs. space (constant factors only here)

Autumn 2016 11CSE373: Data Structures & Algorithms

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

0 10 /

1 / X

2 42

3 / X

4 / X

5 / X

6 / X

7 107 /

8 / X

9 / X

12 22 /

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

Autumn 2016 12CSE373: Data Structures & Algorithms

N

TableSize

 number of elements

Under chaining, the average number of elements per bucket is ___

10/19/2016

3

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

Autumn 2016 13CSE373: Data Structures & Algorithms

N

TableSize

 number of elements

Under chaining, the average number of elements per bucket is
ie. The average list has length

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

Autumn 2016 14CSE373: Data Structures & Algorithms

N

TableSize

 number of elements

Under chaining, the average number of elements per bucket is
ie. The average list has length

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against ____ items

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

Autumn 2016 15CSE373: Data Structures & Algorithms

N

TableSize

 number of elements

Under chaining, the average number of elements per bucket is
ie. The average list has length

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against items

• Each successful find compares against _____ items

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

Autumn 2016 16CSE373: Data Structures & Algorithms

N

TableSize

 number of elements

Under chaining, the average number of elements per bucket is
ie. The average list has length

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against items

• Each successful find compares against / 2 items

So we like to keep fairly low (e.g., 1 or 1.5 or 2) for chaining

Alternative: No lists;
Use empty space in the table

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Autumn 2016 17CSE373: Data Structures & Algorithms

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 /

Alternative: Use empty space in the table

Autumn 2016 18CSE373: Data Structures & Algorithms

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

10/19/2016

4

Alternative: Use empty space in the table

Autumn 2016 19CSE373: Data Structures & Algorithms

0 8

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Autumn 2016 20CSE373: Data Structures & Algorithms

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Autumn 2016 21CSE373: Data Structures & Algorithms

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Probing hash tables

Trying the next spot is called probing (also called open addressing)

– We just did linear probing
• ith probe was (h(key) + i) % TableSize

– In general have some probe function f and use
h(key) + f(i) % TableSize

Open addressing does poorly with high load factor
– So want larger tables

– Too many probes means no more O(1)

Autumn 2016 22CSE373: Data Structures & Algorithms

Other operations

insert finds an open table position using a probe function

What about find?

– Must use same probe function to “retrace the trail” for the data

– Unsuccessful search when reach empty position

What about delete?

– Must use “lazy” deletion. Why?

• Marker indicates “no data here, but don’t stop probing”
– Note: delete with chaining is plain-old list-remove

Autumn 2016 23CSE373: Data Structures & Algorithms

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)

Autumn 2016 24CSE373: Data Structures & Algorithms

[R. Sedgewick]

Tends to produce

clusters, which lead to

long probing sequences

• Called primary
clustering

• Saw this starting in
our example

10/19/2016

5

Analysis of Linear Probing

• Trivial fact: For any < 1, linear probing will find an empty slot

– It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:
Average # of probes given (in the limit as TableSize→)

– Unsuccessful search:

– Successful search:

• This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)

Autumn 2016 25CSE373: Data Structures & Algorithms

 21

1
1

2

1

1

1
1

2

1

In a chart

• Linear-probing performance degrades rapidly as table gets full

– (Formula assumes “large table” but point remains)

• By comparison, chaining performance is linear in and has no
trouble with >1

Autumn 2016 26CSE373: Data Structures & Algorithms

0.00

5.00

10.00

15.00

20.00

0.00 0.20 0.40 0.60 0.80 1.00A
ve

ra
g

e
 #

 o
f

P
ro

b
es

Load Factor

Linear Probing

linear probing
found

linear probing
not found

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0.00 0.20 0.40 0.60 0.80 1.00A
ve

ra
g

e
 #

 o
f

P
ro

b
es

Load Factor

Linear Probing

linear probing
found

linear probing
not found

Quadratic probing

• We can avoid primary clustering by changing the probe function
(h(key) + f(i)) % TableSize

• A common technique is quadratic probing:
f(i) = i2

– So probe sequence is:
• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + 1) % TableSize

• 2nd probe: (h(key) + 4) % TableSize

• 3rd probe: (h(key) + 9) % TableSize

• …
• ith probe: (h(key) + i2) % TableSize

• Intuition: Probes quickly “leave the neighborhood”

Autumn 2016 27CSE373: Data Structures & Algorithms

Quadratic Probing Example

Autumn 2016 28CSE373: Data Structures & Algorithms

0

1

2

3

4

5

6

7

8

9

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Autumn 2016 29CSE373: Data Structures & Algorithms

0

1

2

3

4

5

6

7

8

9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Autumn 2016 30CSE373: Data Structures & Algorithms

0

1

2

3

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

10/19/2016

6

Quadratic Probing Example

Autumn 2016 31CSE373: Data Structures & Algorithms

0 49

1

2

3

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Autumn 2016 32CSE373: Data Structures & Algorithms

0 49

1

2 58

3

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Autumn 2016 33CSE373: Data Structures & Algorithms

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

Another Quadratic Probing Example

Autumn 2016 34CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0

1

2

3

4

5

6

Another Quadratic Probing Example

Autumn 2016 35CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0

1

2

3

4

5

6 76

Another Quadratic Probing Example

Autumn 2016 36CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0

1

2

3

4

5 40

6 76

10/19/2016

7

Another Quadratic Probing Example

Autumn 2016 37CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

Autumn 2016 38CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2 5

3

4

5 40

6 76

Another Quadratic Probing Example

Autumn 2016 39CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Another Quadratic Probing Example

Autumn 2016 40CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Doh!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6
• No where to put the 47!

From Bad News to Good News

• Bad news:

– Quadratic probing can cycle through the same full indices,
never terminating despite table not being full

• Good news:
– If TableSize is prime and < ½, then quadratic probing will

find an empty slot in at most TableSize/2 probes

– So: If you keep < ½ and TableSize is prime, no need to
detect cycles

Autumn 2016 41CSE373: Data Structures & Algorithms

Clustering reconsidered

• Quadratic probing does not suffer from primary clustering:
no problem with keys initially hashing to the same neighborhood

• But it’s no help if keys initially hash to the same index

– Called secondary clustering

• Can avoid secondary clustering with a probe function that
depends on the key: double hashing…

Autumn 2016 42CSE373: Data Structures & Algorithms

10/19/2016

8

Double hashing

Idea:

– Given two good hash functions h and g, it is very unlikely
that for some key, h(key) == g(key)

– So make the probe function f(i) = i*g(key)

Probe sequence:
• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + g(key)) % TableSize

• 2nd probe: (h(key) + 2*g(key)) % TableSize

• 3rd probe: (h(key) + 3*g(key)) % TableSize

• …
• ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g(key) cannot be 0

Autumn 2016 43CSE373: Data Structures & Algorithms

Double-hashing analysis

• Intuition: Because each probe is “jumping” by g(key) each
time, we “leave the neighborhood” and “go different places from
other initial collisions”

• But we could still have a problem like in quadratic probing where
we are not “safe” (infinite loop despite room in table)

– It is known that this cannot happen in at least one case:
• h(key) = key % p

• g(key) = q – (key % q)

• 2 < q < p

• p and q are prime

Autumn 2016 44CSE373: Data Structures & Algorithms

Rehashing
• As with array-based stacks/queues/lists, if table gets too full,

create a bigger table and copy everything

• With chaining, we get to decide what “too full” means

– Keep load factor reasonable (e.g., < 1)?

– Consider average or max size of non-empty chains?

• For probing, half-full is a good rule of thumb

• New table size

– Twice-as-big is a good idea, except that won’t be prime!

– So go about twice-as-big

– Can have a list of prime numbers in your code since you won’t
grow more than 20-30 times

Autumn 2016 45CSE373: Data Structures & Algorithms

Summary

• Hashing gives us approximately O(1) behavior for both insert
and find.

• Collisions are what ruin it.

• There are several different collision strategies.

– Chaining just uses linked lists pointed to by the hash table
bins.

– Probing uses various methods for computing the next index
to try if the first one is full.

– Rehashing makes a new, bigger table.

– If the table is kept reasonably empty (small load factor), and
the hash function works well, we will get the kind of behavior
we want.

Autumn 2016 46CSE373: Data Structures & Algorithms

