
10/19/2016

1

CSE373: Data Structures and Algorithms

Hashing II: Collisions

Steve Tanimoto

Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Hash Tables: Review

• Aim for constant-time (i.e., O(1)) find, insert, and delete

– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size

– But growable as we’ll see

Autumn 2016 2CSE373: Data Structures & Algorithms

E int table-index
collision? collision

resolution

client hash table library

0

…

TableSize –1

hash table

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

– Ideas?

Autumn 2016 3CSE373: Data Structures & Algorithms

Separate Chaining

Chaining:
All keys that map to the same
table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:
insert 10, 22, 107, 12, 42
with mod hashing
and TableSize = 10

Autumn 2016 4CSE373: Data Structures & Algorithms

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

Separate Chaining

Autumn 2016 5CSE373: Data Structures & Algorithms

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 / Chaining:

All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

Separate Chaining

Autumn 2016 6CSE373: Data Structures & Algorithms

0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

22 /

Chaining:

All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

10/19/2016

2

Separate Chaining

Autumn 2016 7CSE373: Data Structures & Algorithms

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

22 /

107 /

Chaining:

All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

Separate Chaining

Autumn 2016 8CSE373: Data Structures & Algorithms

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

12

107 /

22 /

Chaining:

All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

Separate Chaining

Autumn 2016 9CSE373: Data Structures & Algorithms

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

Chaining:

All keys that map to the same

table location are kept in a list
(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

insert 10, 22, 107, 12, 42

with mod hashing
and TableSize = 10

Thoughts on chaining

• Worst-case time for find?

– Linear

– But only with really bad luck or bad hash function

– So not worth avoiding (e.g., with balanced trees at each
bucket)

• Beyond asymptotic complexity, some “data-structure
engineering” may be warranted

– Linked list vs. array vs. tree

– Move-to-front upon access

– Maybe leave room for 1 element (or 2?) in the table itself, to
optimize constant factors for the common case

• A time-space trade-off…

Autumn 2016 10CSE373: Data Structures & Algorithms

Time vs. space (constant factors only here)

Autumn 2016 11CSE373: Data Structures & Algorithms

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

0 10 /

1 / X

2 42

3 / X

4 / X

5 / X

6 / X

7 107 /

8 / X

9 / X

12 22 /

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

Autumn 2016 12CSE373: Data Structures & Algorithms

N

TableSize
 

 number of elements

Under chaining, the average number of elements per bucket is ___

10/19/2016

3

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

Autumn 2016 13CSE373: Data Structures & Algorithms

N

TableSize
 

 number of elements

Under chaining, the average number of elements per bucket is 
ie. The average list has length 

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

Autumn 2016 14CSE373: Data Structures & Algorithms

N

TableSize
 

 number of elements

Under chaining, the average number of elements per bucket is 
ie. The average list has length 

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against ____ items

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

Autumn 2016 15CSE373: Data Structures & Algorithms

N

TableSize
 

 number of elements

Under chaining, the average number of elements per bucket is 
ie. The average list has length 

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against  items

• Each successful find compares against _____ items

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

Autumn 2016 16CSE373: Data Structures & Algorithms

N

TableSize
 

 number of elements

Under chaining, the average number of elements per bucket is 
ie. The average list has length 

So if some inserts are followed by random finds, then on average:
• Each unsuccessful find compares against  items

• Each successful find compares against  / 2 items

So we like to keep  fairly low (e.g., 1 or 1.5 or 2) for chaining

Alternative: No lists;
Use empty space in the table

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Autumn 2016 17CSE373: Data Structures & Algorithms

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 /

Alternative: Use empty space in the table

Autumn 2016 18CSE373: Data Structures & Algorithms

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

10/19/2016

4

Alternative: Use empty space in the table

Autumn 2016 19CSE373: Data Structures & Algorithms

0 8

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Autumn 2016 20CSE373: Data Structures & Algorithms

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Autumn 2016 21CSE373: Data Structures & Algorithms

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Probing hash tables

Trying the next spot is called probing (also called open addressing)

– We just did linear probing
• ith probe was (h(key) + i) % TableSize

– In general have some probe function f and use
h(key) + f(i) % TableSize

Open addressing does poorly with high load factor 
– So want larger tables

– Too many probes means no more O(1)

Autumn 2016 22CSE373: Data Structures & Algorithms

Other operations

insert finds an open table position using a probe function

What about find?

– Must use same probe function to “retrace the trail” for the data

– Unsuccessful search when reach empty position

What about delete?

– Must use “lazy” deletion. Why?

• Marker indicates “no data here, but don’t stop probing”
– Note: delete with chaining is plain-old list-remove

Autumn 2016 23CSE373: Data Structures & Algorithms

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe
function is quick to compute (which is a good thing)

Autumn 2016 24CSE373: Data Structures & Algorithms

[R. Sedgewick]

Tends to produce

clusters, which lead to

long probing sequences

• Called primary
clustering

• Saw this starting in
our example

10/19/2016

5

Analysis of Linear Probing

• Trivial fact: For any  < 1, linear probing will find an empty slot

– It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:
Average # of probes given  (in the limit as TableSize→)

– Unsuccessful search:

– Successful search:

• This is pretty bad: need to leave sufficient empty space in the
table to get decent performance (see chart)

Autumn 2016 25CSE373: Data Structures & Algorithms

  









 21

1
1

2

1



 









1

1
1

2

1

In a chart

• Linear-probing performance degrades rapidly as table gets full

– (Formula assumes “large table” but point remains)

• By comparison, chaining performance is linear in  and has no
trouble with >1

Autumn 2016 26CSE373: Data Structures & Algorithms

0.00

5.00

10.00

15.00

20.00

0.00 0.20 0.40 0.60 0.80 1.00A
ve

ra
g

e
 #

 o
f

P
ro

b
es

Load Factor

Linear Probing

linear probing
found

linear probing
not found

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

0.00 0.20 0.40 0.60 0.80 1.00A
ve

ra
g

e
 #

 o
f

P
ro

b
es

Load Factor

Linear Probing

linear probing
found

linear probing
not found

Quadratic probing

• We can avoid primary clustering by changing the probe function
(h(key) + f(i)) % TableSize

• A common technique is quadratic probing:
f(i) = i2

– So probe sequence is:
• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + 1) % TableSize

• 2nd probe: (h(key) + 4) % TableSize

• 3rd probe: (h(key) + 9) % TableSize

• …
• ith probe: (h(key) + i2) % TableSize

• Intuition: Probes quickly “leave the neighborhood”

Autumn 2016 27CSE373: Data Structures & Algorithms

Quadratic Probing Example

Autumn 2016 28CSE373: Data Structures & Algorithms

0

1

2

3

4

5

6

7

8

9

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Autumn 2016 29CSE373: Data Structures & Algorithms

0

1

2

3

4

5

6

7

8

9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Autumn 2016 30CSE373: Data Structures & Algorithms

0

1

2

3

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

10/19/2016

6

Quadratic Probing Example

Autumn 2016 31CSE373: Data Structures & Algorithms

0 49

1

2

3

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Autumn 2016 32CSE373: Data Structures & Algorithms

0 49

1

2 58

3

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

Quadratic Probing Example

Autumn 2016 33CSE373: Data Structures & Algorithms

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

TableSize=10
Insert:
89
18
49
58
79

Another Quadratic Probing Example

Autumn 2016 34CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0

1

2

3

4

5

6

Another Quadratic Probing Example

Autumn 2016 35CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0

1

2

3

4

5

6 76

Another Quadratic Probing Example

Autumn 2016 36CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0

1

2

3

4

5 40

6 76

10/19/2016

7

Another Quadratic Probing Example

Autumn 2016 37CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

Autumn 2016 38CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2 5

3

4

5 40

6 76

Another Quadratic Probing Example

Autumn 2016 39CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Another Quadratic Probing Example

Autumn 2016 40CSE373: Data Structures & Algorithms

TableSize = 7

Insert:
76 (76 % 7 = 6)
40 (40 % 7 = 5)
48 (48 % 7 = 6)
5 (5 % 7 = 5)
55 (55 % 7 = 6)
47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Doh!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6
• No where to put the 47!

From Bad News to Good News

• Bad news:

– Quadratic probing can cycle through the same full indices,
never terminating despite table not being full

• Good news:
– If TableSize is prime and  < ½, then quadratic probing will

find an empty slot in at most TableSize/2 probes

– So: If you keep  < ½ and TableSize is prime, no need to
detect cycles

Autumn 2016 41CSE373: Data Structures & Algorithms

Clustering reconsidered

• Quadratic probing does not suffer from primary clustering:
no problem with keys initially hashing to the same neighborhood

• But it’s no help if keys initially hash to the same index

– Called secondary clustering

• Can avoid secondary clustering with a probe function that
depends on the key: double hashing…

Autumn 2016 42CSE373: Data Structures & Algorithms

10/19/2016

8

Double hashing

Idea:

– Given two good hash functions h and g, it is very unlikely
that for some key, h(key) == g(key)

– So make the probe function f(i) = i*g(key)

Probe sequence:
• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + g(key)) % TableSize

• 2nd probe: (h(key) + 2*g(key)) % TableSize

• 3rd probe: (h(key) + 3*g(key)) % TableSize

• …
• ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g(key) cannot be 0

Autumn 2016 43CSE373: Data Structures & Algorithms

Double-hashing analysis

• Intuition: Because each probe is “jumping” by g(key) each
time, we “leave the neighborhood” and “go different places from
other initial collisions”

• But we could still have a problem like in quadratic probing where
we are not “safe” (infinite loop despite room in table)

– It is known that this cannot happen in at least one case:
• h(key) = key % p

• g(key) = q – (key % q)

• 2 < q < p

• p and q are prime

Autumn 2016 44CSE373: Data Structures & Algorithms

Rehashing
• As with array-based stacks/queues/lists, if table gets too full,

create a bigger table and copy everything

• With chaining, we get to decide what “too full” means

– Keep load factor reasonable (e.g., < 1)?

– Consider average or max size of non-empty chains?

• For probing, half-full is a good rule of thumb

• New table size

– Twice-as-big is a good idea, except that won’t be prime!

– So go about twice-as-big

– Can have a list of prime numbers in your code since you won’t
grow more than 20-30 times

Autumn 2016 45CSE373: Data Structures & Algorithms

Summary

• Hashing gives us approximately O(1) behavior for both insert
and find.

• Collisions are what ruin it.

• There are several different collision strategies.

– Chaining just uses linked lists pointed to by the hash table
bins.

– Probing uses various methods for computing the next index
to try if the first one is full.

– Rehashing makes a new, bigger table.

– If the table is kept reasonably empty (small load factor), and
the hash function works well, we will get the kind of behavior
we want.

Autumn 2016 46CSE373: Data Structures & Algorithms

