Review: Binary Search Trees (BST)

• Structure property (binary tree)
 – Each node has \(\leq 2 \) children
 – Result: keeps operations simple

• Order property
 – All keys in left subtree smaller than node’s key
 – All keys in right subtree larger than node’s key
 – Result: easy to find any given key

How can we make a BST efficient?

Observation
• BST: the shallower the better!

Solution: Require and maintain a Balance Condition that
1. Ensures depth is always \(\Theta(\log n) \) – strong enough!
2. Is efficient to maintain – not too strong!

• When we build the tree, make sure it’s balanced.

• BUT...Balancing a tree only at build time is insufficient because sequences of operations can eventually transform our carefully balanced tree into the dreaded list 😞

• So, we also need to also keep the tree balanced as we perform operations.

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes

 Too weak!

 Height mismatch example:

2. Left and right subtrees of the root have equal height

 Too weak!

 Double chain example:

3. Left and right subtrees of every node have equal number of nodes

 Too strong!

 Only perfect trees (2^n – 1 nodes)

4. Left and right subtrees of every node have equal height

 Too strong!

 Only perfect trees (2^n – 1 nodes)
The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Definition: balance(node) = height(node.left) – height(node.right)

AVL property: for every node x, -1 ≤ balance(x) ≤ 1

• Ensures small depth
 – This is because an AVL tree of height h must have a number of nodes exponential in h
 Thus height must be \log(number of nodes).

• Efficient to maintain
 – Using single and double rotations

Is this an AVL tree?

Yes! Because the left and right subtrees of every node have heights differing by at most 1

Is this an AVL tree?

Nope! The left and right subtrees of some nodes (e.g. 1, 4, 6) have heights that differ by more than 1

What do AVL trees give us?

• If we have an AVL tree, then the number of nodes is an exponential function of the height.

• Thus the height is a log function of the number of nodes!

• And thus finds is $O(\log n)$

But as we insert and delete elements, we need to:
1. Track balance
2. Detect imbalance
3. Restore balance

The AVL Tree Data Structure

An AVL tree is a self-balancing binary search tree.

Structural properties
1. Binary tree property (same as BST)
2. Order property (same as for BST)

1. Balance property:
 balance of every node is between -1 and 1

Result: Worst-case depth is in $\Theta(\log n)$

• Named after inventors Adelson-Velski and Landis (AVL)
 – First invented in 1962

An AVL Tree

Node object
AVL tree operations

- **AVL find**:
 - Same as BST find
- **AVL insert**:
 - First BST insert, then check balance and potentially “fix” the AVL tree
 - Four different imbalance cases
- **AVL delete**:
 - The “easy way” is lazy deletion
 - Otherwise, do the deletion and then check for several imbalance cases (we will skip this)

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the insertion may (or may not) have changed the node’s height
3. So after insertion in a subtree, detect height imbalance and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:
- There must be a deepest element that is imbalanced after the insert (all descendants still balanced)
- After rebalancing this deepest node, every node is balanced
- So at most one node needs to be rebalanced

Case #1: Example

<table>
<thead>
<tr>
<th>Insert(6)</th>
<th>Insert(3)</th>
<th>Insert(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third insertion violates balance property</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- happens to be at the root

What is the only way to fix this?

Fix: Apply “Single Rotation”

- **Single rotation**: The basic operation we’ll use to rebalance
 - Move child of unbalanced node into parent position
 - Parent becomes the “other” child (always okay in a BST!)
 - Other subtrees move in only way BST allows (next slide)

AVL Property violated at node 6

- A single rotation restores balance at the node
- To same height as before insertion, so ancestors now balanced

The example generalized: Left of Left

- Insertion into left-left grandchild causes an imbalance
 - 1 of 4 possible imbalance causes (other 3 coming up!)
- Creates an imbalance in the AVL tree (specifically a is imbalanced)
Another example: \texttt{insert(16)}

\begin{itemize}
 \item \textit{Mirror image to left-left case, so you rotate the other way}
 \item \textit{Exact same concept, but needs different code}
\end{itemize}

\textbf{The general right-right case}

\begin{itemize}
 \item First wrong idea: single rotation like we did for left-left
 \item Second wrong idea: single rotation on the child of the unbalanced node
\end{itemize}

\textbf{Two cases to go}

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: \texttt{insert(1)}, \texttt{insert(6)}, \texttt{insert(3)}

\textbf{Sometimes two wrongs make a right 😊}

\begin{itemize}
 \item First idea violated the order property
 \item Second idea didn’t fix balance
 \item But if we do both single rotations, starting with the second, it works! (And not just for this example.)
 \item Double rotation:
 \begin{enumerate}
 \item Rotate problematic child and grandchild
 \item Then rotate between self and new child
 \end{enumerate}
\end{itemize}

\textbf{The general right-left case}

\begin{itemize}
 \item Violates order property!
\end{itemize}
Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
 - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

 ![Balance Diagram](image)

 Easier to remember than you may think:
 Move c to grandparent’s position
 Put a, b, X, U, V, and Z in the only legal positions for a BST

Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
 - Node’s left-left grandchild is too tall
 - Node’s left-right grandchild is too tall
 - Node’s right-left grandchild is too tall
 - Node’s right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallest-unbalanced subtree has the same height as before the insertion
 - So all ancestors are now balanced

Example

Insert a 6

![Insert Diagram](image)

What’s the deepest node that is unbalanced?
What’s the case?
What do we do?
Now efficiency

- Worst-case complexity of find: $\Theta(\log n)$
 - Tree is balanced
- Worst-case complexity of insert: $\Theta(\log n)$
 - Tree starts balanced
 - A rotation is $O(1)$ and there's a path in $\Theta(\log n)$ path to root
 - Tree ends balanced
- Worst-case complexity of buildTree: $\Theta(n \log n)$

Takes some more rotation action to handle delete...

Pros and Cons of AVL Trees

Arguments for AVL trees:
1. All operations logarithmic worst-case because trees are always balanced
2. Height balancing adds no more than a constant factor to the speed of insert and delete

Arguments against AVL trees:
1. More difficult to program & debug [but done once in a library!]
2. More space for height field
3. Asymptotically faster but rebalancing takes a little time
4. If amortized (later) logarithmic time is enough, use splay trees (also in the text)
Practice

Insert 30, 20, 15, 10, 25, 40, 1, 2, 3, 4, 5

Which is the deepest unbalanced node?
Which case is it?
left-right
(left child of unbalanced node, right side of that left child)
Can you do it?