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CSE373: Data Structures and Algorithms

Induction and Its Applications
Part 3:

Proving Recursive Algorithms Correct with Induction

Lecture Outline

• Proving the Correctness of Recursive Algorithms.

• Induction hypothesis: the recursive calls are correct.

• Example: Merge Sort.

• The General Method for Induction with Recursive 
Algorithms.
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Recursion is essential in applications such as creating regular 
fractal images.

Sierpinski-triangle bedecked umbrella image by Paul Scott.
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Proof of Correctness for 
Recursive Algorithms
• In order to prove recursive algorithms, we 

have to:
1. Prove the partial correctness (the fact that the 

program behaves correctly).
• We assume that all recursive calls with arguments that 

satisfy the preconditions behave as described by the 
specification, and use it to show that the algorithm 
behaves as specified.

2. Prove that the program terminates.
• Any chain of recursive calls eventually ends and all 

loops, if any, terminate after some finite number of 
iterations.
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The Merge Sort algorithm is an excellent example of a recursive algorithm.
Image courtesy of cs60.net at Harvard Univ.
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Example - Merge Sort

MERGE-SORT(A,p,r)
if p < r

q = (p+r)/2
MERGE-SORT(A,p,q)
MERGE-SORT(A,q+1,r)
MERGE(A,p,q,r)

Precondition:

Array A has at least 1 element between indexes p 
and r (p  r).

Postcondition:

The elements between indexes p and r are sorted.

p rq

6Univ. of Wash. CSE 373 -- Autumn 2016



10/3/2016

2

Example - Merge Sort

MERGE (A,p,q,r)

Precondition: A is an array 
and p, q, and r are 
indices into the array 
such that p  q < r. 
The subarrays A[p .. q] 
and A[q+1 .. r] are sorted 

Postcondition: The subarray
A[p..r] is sorted

• MERGE-SORT calls a 
function MERGE(A,p,q,r) 
to merge the sorted 
subarrays of A into a 
single sorted one.

• The proof of MERGE 
(which is an iterative 
function) can be done 
separately, using loop 
invariants.

• We assume here that 
MERGE has been  proved 
to fulfill its postconditions
(can do it as a distinct 
exercise).
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Correctness proof for Merge-Sort 
• Number of elements to be sorted: n = r-p+1

• Base Case: n = 1 
– A contains a single element (which is trivially “sorted”).  

• Inductive Hypothesis:
– Assume that MergeSort correctly sorts n=1, 2, ..., k elements. 

• Inductive Step: 
– Show that MergeSort correctly sorts n = k + 1 elements. 

– First recursive call n1=q-p+1=(k+1)/2  k  subarray A[p .. q] is sorted 

– Second recursive call n2=r-q=(k+1)/2  k  subarray A[q+1 .. r] is sorted

– A, p, q, r fulfill now  the precondition of  Merge

– The postcondition of Merge guarantees that the array   A[p ..  r] is sorted 
 postcondition of MergeSort

8Univ. of Wash. CSE 373 -- Autumn 2016

Correctness proof for Merge-Sort 

• Termination:
– To argue termination, we have to find a quantity that 

decreases with every recursive call:  the length of the part of 
A considered by a call to MergeSort

– For the base case, we have a one-element array. the 
algorithm terminates in this case without making additional 
recursive calls.
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Correctness proofs 
for  recursive algorithms 

• Base Case: Prove that RECURSIVE works for  n = small_value

• Inductive Hypothesis (strong induction form):
– Assume that RECURSIVE works correctly for  n=small_value, ..., k

• Inductive Step: 
– Show that RECURSIVE works correctly for n = k + 1

RECURSIVE(n) is
if (n=small_value) 

return simple_answer
else

RECURSIVE(n1)    
…
RECURSIVE(nr)
some_code

n1, n2, … nr are some 
values smaller than n but 
bigger than  small_value 
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Lecture (Parts 1, 2, and 3) Summary

• Proving  that an  algorithm is totally correct 
means:
1.Proving that it will terminate

2.Proving that  the list of actions applied to the input 
(satisfying the precondition) imply the output 
satisfies the postcondition.

• How to prove repetitive algorithms correct:
– Iterative algorithms: use Loop invariants, 

Induction

– Recursive algorithms: use induction using as 
hypothesis the recursive call
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