
10/3/2016

1

Steve Tanimoto

Autumn 2016

This lecture material is based in part on materials provided by Ioana Sora at the Politechnic
University of Timisoara.

CSE373: Data Structures and Algorithms

Induction and Its Applications
Part 3:

Proving Recursive Algorithms Correct with Induction

Lecture Outline

• Proving the Correctness of Recursive Algorithms.

• Induction hypothesis: the recursive calls are correct.

• Example: Merge Sort.

• The General Method for Induction with Recursive
Algorithms.

2Univ. of Wash. CSE 373 -- Autumn 2016

Recursion is essential in applications such as creating regular
fractal images.

Sierpinski-triangle bedecked umbrella image by Paul Scott.

3Univ. of Wash. CSE 373 -- Autumn 2016

Proof of Correctness for
Recursive Algorithms
• In order to prove recursive algorithms, we

have to:
1. Prove the partial correctness (the fact that the

program behaves correctly).
• We assume that all recursive calls with arguments that

satisfy the preconditions behave as described by the
specification, and use it to show that the algorithm
behaves as specified.

2. Prove that the program terminates.
• Any chain of recursive calls eventually ends and all

loops, if any, terminate after some finite number of
iterations.

4Univ. of Wash. CSE 373 -- Autumn 2016

The Merge Sort algorithm is an excellent example of a recursive algorithm.
Image courtesy of cs60.net at Harvard Univ.

5Univ. of Wash. CSE 373 -- Autumn 2016

Example - Merge Sort

MERGE-SORT(A,p,r)
if p < r

q = (p+r)/2
MERGE-SORT(A,p,q)
MERGE-SORT(A,q+1,r)
MERGE(A,p,q,r)

Precondition:

Array A has at least 1 element between indexes p
and r (p r).

Postcondition:

The elements between indexes p and r are sorted.

p rq

6Univ. of Wash. CSE 373 -- Autumn 2016

10/3/2016

2

Example - Merge Sort

MERGE (A,p,q,r)

Precondition: A is an array
and p, q, and r are
indices into the array
such that p q < r.
The subarrays A[p .. q]
and A[q+1 .. r] are sorted

Postcondition: The subarray
A[p..r] is sorted

• MERGE-SORT calls a
function MERGE(A,p,q,r)
to merge the sorted
subarrays of A into a
single sorted one.

• The proof of MERGE
(which is an iterative
function) can be done
separately, using loop
invariants.

• We assume here that
MERGE has been proved
to fulfill its postconditions
(can do it as a distinct
exercise).

7Univ. of Wash. CSE 373 -- Autumn 2016

Correctness proof for Merge-Sort
• Number of elements to be sorted: n = r-p+1

• Base Case: n = 1
– A contains a single element (which is trivially “sorted”).

• Inductive Hypothesis:
– Assume that MergeSort correctly sorts n=1, 2, ..., k elements.

• Inductive Step:
– Show that MergeSort correctly sorts n = k + 1 elements.

– First recursive call n1=q-p+1=(k+1)/2 k subarray A[p .. q] is sorted

– Second recursive call n2=r-q=(k+1)/2 k subarray A[q+1 .. r] is sorted

– A, p, q, r fulfill now the precondition of Merge

– The postcondition of Merge guarantees that the array A[p .. r] is sorted
 postcondition of MergeSort

8Univ. of Wash. CSE 373 -- Autumn 2016

Correctness proof for Merge-Sort

• Termination:
– To argue termination, we have to find a quantity that

decreases with every recursive call: the length of the part of
A considered by a call to MergeSort

– For the base case, we have a one-element array. the
algorithm terminates in this case without making additional
recursive calls.

9Univ. of Wash. CSE 373 -- Autumn 2016

Correctness proofs
for recursive algorithms

• Base Case: Prove that RECURSIVE works for n = small_value

• Inductive Hypothesis (strong induction form):
– Assume that RECURSIVE works correctly for n=small_value, ..., k

• Inductive Step:
– Show that RECURSIVE works correctly for n = k + 1

RECURSIVE(n) is
if (n=small_value)

return simple_answer
else

RECURSIVE(n1)
…
RECURSIVE(nr)
some_code

n1, n2, … nr are some
values smaller than n but
bigger than small_value

10Univ. of Wash. CSE 373 -- Autumn 2016

Lecture (Parts 1, 2, and 3) Summary

• Proving that an algorithm is totally correct
means:
1.Proving that it will terminate

2.Proving that the list of actions applied to the input
(satisfying the precondition) imply the output
satisfies the postcondition.

• How to prove repetitive algorithms correct:
– Iterative algorithms: use Loop invariants,

Induction

– Recursive algorithms: use induction using as
hypothesis the recursive call

11Univ. of Wash. CSE 373 -- Autumn 2016

Bibliography

• Weiss, Ch. 1 section on induction.

• Goodrich and Tamassia: Induction and loop invariants; see, e.g.,
http://www.cs.mun.ca/~kol/courses/2711-w09/Induction.pdf)

• Erickson, J. Proof by Induction. Available at:
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-
induction.pdf

12Univ. of Wash. CSE 373 -- Autumn 2016

