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CSE373: Data Structures and Algorithms

Induction and Its Applications
Part 1:

Algorithm Correctness, Loop Invariants, and Induction

Steve Tanimoto

Autumn 2016

This lecture material is based in part on materials provided by Ioana Sora at the Politechnic
University of Timisoara.

The cover from Francesco Maurolico's Arithmeticorum Libri Duo (1575), which includes one of the 
first known proofs by mathematical induction.
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Lecture Outline

• Key Parts of an Algorithm

– Input, output, preconditions, postconditions, process desc.

• Proving the Correctness of Algorithms

– Tracing data movements and changes

– Example: the Swap1 procedure.

• Using Induction to Prove Algorithm Properties

– Loop Invariants

– Example: Sum_of_n_numbers.

– Induction 
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What are key parts of an algorithm ?

• An algorithm is described by:
– Input data
– Output data
– Preconditions: specifies restrictions on input data
– Postconditions: specifies what is the  result
– Step-by-step process specification

• Example: Binary Search 
– Input data:  a:array of integer; x:integer;
– Output data: found:boolean;
– Precondition: a is sorted in ascending order
– Postcondition: found is true if x is in a, and found is false 

otherwise
– Step-by-step description of the search process.
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Correct algorithms

• An algorithm is correct if:

– for any correct input data:

• it stops and 

• it produces correct output.

– Correct input data: satisfies precondition

– Correct output data: satisfies postcondition
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Proving correctness

• An algorithm  a list of actions

• Proving  that an  algorithm is totally correct:
1. Proving that it will terminate

2. Proving that  the list of actions applied to the input 
(which satisfies the precondition)  imply that the output 
satisfies the postcondition

– This is easy to prove for simple sequential algorithms

– This can be complicated to prove for repetitive algorithms 
(containing loops or recursion)
• Use techniques based on loop invariants and induction
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Example – a sequential algorithm

Swap1(x,y):

aux := x

x := y

y := aux

Precondition:

x = a and y = b

Postcondition:

x = b and y = a

Proof: the list of actions applied 
to the input (which satisfies 
the precondition)  imply the 
output satisfies the 
postcondition

1. Precondition:        
x = a and y = b

2. aux := x  aux = a

3. x := y  x = b 

4. y := aux  y = a 

5. x = b and y = a is 
the Postcondition
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Example – a repetitive algorithm

Proof: The list of actions 
applied to the 
precondition  imply the 
postcondition

BUT: we cannot enumerate 
all the actions in case of 
a repetitive algorithm !

We use techniques based on 
loop invariants and 
induction

Algorithm Sum_of_N_numbers

Input: integer N, and 

a, an array of N numbers
Output: s, the sum of the N

numbers in a

s:=0;
k:=0;
while (k<N) do

s:=s+a[k];
k:=k+1;  

end
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Loop invariants

• A loop invariant is a logical predicate such 
that: if it is satisfied before entering any single 
iteration of the loop then it is also satisfied 
after that iteration.
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Example: Loop invariant for Sum 
of n numbers
Algorithm Sum_of_N_numbers

Algorithm Sum_of_N_numbers

Input: integer N, and 
a, an array of N numbers

Output: s, the sum of the N numbers in a

s:=0;
k:=0;
while (k<N) do

s:=s+a[k];
k:=k+1;  

end

Loop invariant = induction hypothesis:  
At step k, s holds the sum of the first 
k numbers.
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Using loop invariants in proofs

We must show the following 2 things about a loop 
invariant:

1. Initialization: It is true prior to the first iteration of 
the loop.

2. Maintenance: If it is true before an iteration of the 
loop, it remains true before the next iteration.

We also must show Termination: that the loop 
terminates.

When the loop terminates, the invariant gives us a 
useful property that helps show that the algorithm is 
correct.
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Example: Proving the correctness of  
the  Sum algorithm (1)

• Induction hypothesis: s = sum of the first k numbers

1. Initialization: The hypothesis is true at the 
beginning of the loop:

Before the first iteration: k=0, s=0. The first 0 
numbers have sum zero (there are no numbers) 
 hypothesis true before entering the loop
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Example: Proving the correctness of  
the  Sum algorithm (2)

• Induction hypothesis: s = sum of the first k numbers

2. Maintenance: If hypothesis is true before step k, 
then it will be true before step k+1 (immediately 
after step k is finished).

We assume that it is true at beginning of step k:  “s is the 
sum of the first k numbers.”

We have to prove that after executing step k, at the 
beginning of step k+1:  “s is the sum of the first k+1 
numbers.”

We calculate the value of s at the end of this step
k:=k+1, s:=s+a[k+1]  s is the sum of the first k+1 

numbers.
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Example: Proving the correctness of  
the  Sum algorithm (3)

• Induction hypothesis: s = sum of the first k numbers

3. Termination: When the loop terminates, the 
hypothesis implies the correctness of the 
algorithm.

The loop terminates when k=n.

This implies  s = sum of first k=n numbers.

Thus the postcondition of the algorithm is satisfied.

Q.E.D. (Quod Erat Demonstrandum; we are done.)
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Loop invariants and induction

• Proving loop invariants is a form of mathematical induction:

– showing that the invariant holds before the first iteration 
corresponds to the base case, and 

– showing that the invariant holds from iteration to iteration 
corresponds to the inductive step.
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Mathematical induction is like a domino chain.  If the relationship 
between each domino and the next is set up properly, all it takes is 
to topple the first domino, and all the rest fall down automatically.

Image by Mark Wibrow.
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