
10/3/2016

1

CSE373: Data Structures and Algorithms

Induction and Its Applications
Part 1:

Algorithm Correctness, Loop Invariants, and Induction

Steve Tanimoto

Autumn 2016

This lecture material is based in part on materials provided by Ioana Sora at the Politechnic
University of Timisoara.

The cover from Francesco Maurolico's Arithmeticorum Libri Duo (1575), which includes one of the
first known proofs by mathematical induction.

2Univ. of Wash. CSE 373 -- Autumn 2016

Lecture Outline

• Key Parts of an Algorithm

– Input, output, preconditions, postconditions, process desc.

• Proving the Correctness of Algorithms

– Tracing data movements and changes

– Example: the Swap1 procedure.

• Using Induction to Prove Algorithm Properties

– Loop Invariants

– Example: Sum_of_n_numbers.

– Induction

3Univ. of Wash. CSE 373 -- Autumn 2016

What are key parts of an algorithm ?

• An algorithm is described by:
– Input data
– Output data
– Preconditions: specifies restrictions on input data
– Postconditions: specifies what is the result
– Step-by-step process specification

• Example: Binary Search
– Input data: a:array of integer; x:integer;
– Output data: found:boolean;
– Precondition: a is sorted in ascending order
– Postcondition: found is true if x is in a, and found is false

otherwise
– Step-by-step description of the search process.

4Univ. of Wash. CSE 373 -- Autumn 2016

Correct algorithms

• An algorithm is correct if:

– for any correct input data:

• it stops and

• it produces correct output.

– Correct input data: satisfies precondition

– Correct output data: satisfies postcondition

5Univ. of Wash. CSE 373 -- Autumn 2016

Proving correctness

• An algorithm a list of actions

• Proving that an algorithm is totally correct:
1. Proving that it will terminate

2. Proving that the list of actions applied to the input
(which satisfies the precondition) imply that the output
satisfies the postcondition

– This is easy to prove for simple sequential algorithms

– This can be complicated to prove for repetitive algorithms
(containing loops or recursion)
• Use techniques based on loop invariants and induction

6Univ. of Wash. CSE 373 -- Autumn 2016

10/3/2016

2

Example – a sequential algorithm

Swap1(x,y):

aux := x

x := y

y := aux

Precondition:

x = a and y = b

Postcondition:

x = b and y = a

Proof: the list of actions applied
to the input (which satisfies
the precondition) imply the
output satisfies the
postcondition

1. Precondition:
x = a and y = b

2. aux := x aux = a

3. x := y x = b

4. y := aux y = a

5. x = b and y = a is
the Postcondition

7Univ. of Wash. CSE 373 -- Autumn 2016

Example – a repetitive algorithm

Proof: The list of actions
applied to the
precondition imply the
postcondition

BUT: we cannot enumerate
all the actions in case of
a repetitive algorithm !

We use techniques based on
loop invariants and
induction

Algorithm Sum_of_N_numbers

Input: integer N, and

a, an array of N numbers
Output: s, the sum of the N

numbers in a

s:=0;
k:=0;
while (k<N) do

s:=s+a[k];
k:=k+1;

end

8Univ. of Wash. CSE 373 -- Autumn 2016

Loop invariants

• A loop invariant is a logical predicate such
that: if it is satisfied before entering any single
iteration of the loop then it is also satisfied
after that iteration.

9Univ. of Wash. CSE 373 -- Autumn 2016

Example: Loop invariant for Sum
of n numbers
Algorithm Sum_of_N_numbers

Algorithm Sum_of_N_numbers

Input: integer N, and
a, an array of N numbers

Output: s, the sum of the N numbers in a

s:=0;
k:=0;
while (k<N) do

s:=s+a[k];
k:=k+1;

end

Loop invariant = induction hypothesis:
At step k, s holds the sum of the first
k numbers.

10Univ. of Wash. CSE 373 -- Autumn 2016

Using loop invariants in proofs

We must show the following 2 things about a loop
invariant:

1. Initialization: It is true prior to the first iteration of
the loop.

2. Maintenance: If it is true before an iteration of the
loop, it remains true before the next iteration.

We also must show Termination: that the loop
terminates.

When the loop terminates, the invariant gives us a
useful property that helps show that the algorithm is
correct.

11Univ. of Wash. CSE 373 -- Autumn 2016

Example: Proving the correctness of
the Sum algorithm (1)

• Induction hypothesis: s = sum of the first k numbers

1. Initialization: The hypothesis is true at the
beginning of the loop:

Before the first iteration: k=0, s=0. The first 0
numbers have sum zero (there are no numbers)
 hypothesis true before entering the loop

12Univ. of Wash. CSE 373 -- Autumn 2016

10/3/2016

3

Example: Proving the correctness of
the Sum algorithm (2)

• Induction hypothesis: s = sum of the first k numbers

2. Maintenance: If hypothesis is true before step k,
then it will be true before step k+1 (immediately
after step k is finished).

We assume that it is true at beginning of step k: “s is the
sum of the first k numbers.”

We have to prove that after executing step k, at the
beginning of step k+1: “s is the sum of the first k+1
numbers.”

We calculate the value of s at the end of this step
k:=k+1, s:=s+a[k+1] s is the sum of the first k+1

numbers.

13Univ. of Wash. CSE 373 -- Autumn 2016

Example: Proving the correctness of
the Sum algorithm (3)

• Induction hypothesis: s = sum of the first k numbers

3. Termination: When the loop terminates, the
hypothesis implies the correctness of the
algorithm.

The loop terminates when k=n.

This implies s = sum of first k=n numbers.

Thus the postcondition of the algorithm is satisfied.

Q.E.D. (Quod Erat Demonstrandum; we are done.)

14Univ. of Wash. CSE 373 -- Autumn 2016

Loop invariants and induction

• Proving loop invariants is a form of mathematical induction:

– showing that the invariant holds before the first iteration
corresponds to the base case, and

– showing that the invariant holds from iteration to iteration
corresponds to the inductive step.

15Univ. of Wash. CSE 373 -- Autumn 2016

Mathematical induction is like a domino chain. If the relationship
between each domino and the next is set up properly, all it takes is
to topple the first domino, and all the rest fall down automatically.

Image by Mark Wibrow.

16Univ. of Wash. CSE 373 -- Autumn 2016

Bibliography

• Weiss, Ch. 1 section on induction.

• Goodrich and Tamassia: Induction and loop invariants; see, e.g.,
http://www.cs.mun.ca/~kol/courses/2711-w09/Induction.pdf)

• Erickson, J. Proof by Induction. Available at:
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/98-
induction.pdf

17Univ. of Wash. CSE 373 -- Autumn 2016

