
10/10/2016

1

CSE373: Data Structures and Algorithms
Dictionaries and Trees

Steve Tanimoto
Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Let’s take a breath
• So far we’ve covered

– Some simple ADTs: stacks, queues, lists
– Some math (proof by induction)
– How to analyze algorithms
– Asymptotic notation (Big-O)

• Coming up….
– Many more ADTs

• Starting with dictionaries

2CSE 373 Autumn 2016

The Dictionary (a.k.a. Map) ADT
• Data:

– set of (key, value) pairs
– keys must be comparable

• Operations:
– insert(key,value)
– find(key)
– delete(key)
– …

• dbutler1
Dan Butler
OH: Thurs 1:30-2:30
…

• efgan
Emilia Gan
OH: Wed 11:00-12:00
…

• adwin555
Adwin Jahn
OH: Fri 9:00-10:00
…

insert(dbutler1, ….)

find(adwin555)
Adwin Jahn, …

Will tend to emphasize the keys;
don’t forget about the stored values

3CSE 373 Autumn 2016

A Modest Few Uses
Any time you want to store information according to some key and

be able to retrieve it efficiently
– Lots of programs do that!

• Search: inverted indexes, phone directories, …
• Networks: router tables
• Operating systems: page tables
• Compilers: symbol tables
• Databases: dictionaries with other nice properties
• Biology: genome maps
• …

Possibly the most widely used ADT

4CSE 373 Autumn 2016

key | attr1 | attr2 | attr3
k1 | v11 | v12 | v13
k2 | v21 | v22 | v23

Simple implementations
For dictionary with n key/value pairs

insert find delete
• Unsorted linked-list

• Unsorted array

• Sorted linked list

• Sorted array
* Unless we need to check for duplicates
We’ll see a Binary Search Tree (BST) probably does better

but not in the worst case (unless we keep it balanced)
5CSE 373 Autumn 2016

O(1)* O(n) O(n)
O(n) O(n)

O(n) O(n) O(n)
O(1)*

O(n) O(n) O(log n)

Lazy Deletion

A general technique for making delete as fast as find:
– Instead of actually removing the item just mark it deleted

Plusses:
– Simpler
– Can do removals later in batches
– If re-added soon thereafter, just unmark the deletion

Minuses:
– Extra space for the “is-it-deleted” flag
– Data structure full of deleted nodes wastes space
– May complicate other operations

6CSE 373 Autumn 2016

10 12 24 30 41 42 44 45 50

10/10/2016

2

Better dictionary data structures
There are many good data structures for (large) dictionaries
1. Binary trees
2. AVL trees

– Binary search trees with guaranteed balancing
3. B-Trees

– Also always balanced, but different and shallower
– B-Trees are not the same as Binary Trees

• B-Trees generally have large branching factor
4. Hash Tables

– Not tree-like at all
Skipping: Other balanced trees (e.g., red-black, splay)

7CSE 373 Autumn 2016

Tree terms (review?)

8CSE 373 Autumn 2016

A

E
B

D F
C
G

IH

LJ MK N

Tree T

Root (tree)
Leaves (tree)
Children (node)
Parent (node)
Siblings (node)
Ancestors (node)
Descendents (node)
Subtree (node)

Depth (node)
Height (tree)
Degree (node)
Branching factor (tree)

Depth 0

Depth 1

Depth 2

Depth 3

Depth 4

4

More tree terms
• There are many kinds of trees

– Every binary tree is a tree
– Every list is kind of a tree (think of “next” as the one child)

• There are many kinds of binary trees
– Every binary search tree is a binary tree
– Later: A binary heap is a different kind of binary tree

• A tree can be balanced or not
– A balanced tree with n nodes has a height of O(log n)
– Different tree data structures have different “balance

conditions” to achieve this

9CSE 373 Autumn 2016

Kinds of trees
Certain terms define trees with specific structure
• Binary tree: Each node has at most 2 children (branching factor 2)
• n-ary tree: Each node has at most n children (branching factor n)
• Perfect tree: Each row completely full
• Complete tree: Each row completely full except maybe the bottom

row, which is filled from left to right

10CSE 373 Autumn 2016

What is the height of a perfect binary tree with n nodes?
A complete binary tree?

log2n

Binary Trees
• Binary tree: Each node has at most 2 children (branching factor 2)
• Binary tree is

– A root (with data)
– A left subtree that’s a binary tree
– A right subtree that’s a binary tree

• These subtrees may be empty.
• Representation:

A

B

D E

C

F

HG

JI

Data
right

pointer
left

pointer
• For a dictionary, data will include a key and a value

11CSE 373 Autumn 2016

Binary Tree Representation

12CSE 373 Autumn 2016

10/10/2016

3

Binary Trees: Some Numbers
Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h:
– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

2h

2(h + 1) - 1
1
h + 1

For n nodes, we cannot do better than O(log n)
height and we want to avoid O(n) height

13CSE 373 Autumn 2016

Calculating height
What is the height of a tree with root root?

14CSE 373 Autumn 2016

int treeHeight(Node root) {
???

}

Calculating height
What is the height of a tree with root root?

15CSE 373 Autumn 2016

int treeHeight(Node root) {
if(root == null)

return -1;
return 1 + max(treeHeight(root.left),

treeHeight(root.right));
}

Running time for tree with n nodes: O(n) – single pass over tree
Note: non-recursive is painful – need your own stack of pending

nodes; much easier to use the system’s call stack

Tree Traversals
A traversal is an order for visiting all the nodes of a tree

• Pre-order: root, left subtree, right subtree
+ * 2 4 5

• In-order: left subtree, root, right subtree
2 * 4 + 5

• Post-order: left subtree, right subtree, root
2 4 * 5 +

+
*

2 4
5

(an expression tree)

16CSE 373 Autumn 2016

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

17CSE 373 Autumn 2016

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

18CSE 373 Autumn 2016

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

10/10/2016

4

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

19CSE 373 Autumn 2016

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

20CSE 373 Autumn 2016

= current node = processing (on the call stack)
= completed node

A A
A

✓

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

21CSE 373 Autumn 2016

= current node = processing (on the call stack)
= completed node

A A
A

✓
✓

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

22CSE 373 Autumn 2016

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

✓
✓ ✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

23CSE 373 Autumn 2016

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

✓
✓ ✓

✓
More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

24CSE 373 Autumn 2016

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

✓
✓ ✓

✓

10/10/2016

5

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

25CSE 373 Autumn 2016

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

✓
✓ ✓

✓

✓
✓

More on traversals
void inOrderTraversal(Node t){

if(t != null) {
inOrderTraversal(t.left);
process(t.element);
inOrderTraversal(t.right);

}
}

A

B

D E

C

F G

26CSE 373 Autumn 2016

= current node = processing (on the call stack)
= completed node

A A
A

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

✓
✓ ✓

✓

✓
✓ ✓

More on traversals
void preOrderTraversal(Node t){

if(t != null) {
process(t.element);
preOrderTraversal(t.left);
preOrderTraversal(t.left)

}
}

A

B

D E

C

F G

27CSE 373 Autumn 2016

= current node = processing (on the call stack)
= completed node = element has been processed

A A
A ✓

Preorder Exercise

CSE 373 Autumn 2016 28

Q

R S

T U

v

w

