

Let's take a breath - So far we've covered - Some simple ADTs: stacks, queues, lists - Some math (proof by induction) - How to analyze algorithms - Asymptotic notation (Big-O) - Coming up.... - Many more ADTs - Starting with dictionaries	
CSE 373 Autumn 2016	2

The Dictionary (a.k.a. Map) ADT

Simple implementations

For dictionary with n key/value pairs			
	insert $\boldsymbol{O}(\mathbf{1})^{*}$	find $\boldsymbol{O}(\mathbf{n})$	delete $\boldsymbol{O}(\mathbf{n})$
- Unsorted linked-list	$\boldsymbol{O}(\mathbf{1})^{*}$	$\boldsymbol{O}(\mathbf{n})$	$\boldsymbol{O}(\mathbf{n})$
- Unsorted array	$\boldsymbol{O}(\mathbf{n})$	$\boldsymbol{O}(\mathbf{n})$	$\boldsymbol{O}(\mathbf{n})$
- Sorted linked list	$\boldsymbol{O}(\mathbf{n})$	$\boldsymbol{O}(\log \mathbf{n})$	$\boldsymbol{O}(\mathbf{n})$

* Unless we need to check for duplicates

We'll see a Binary Search Tree (BST) probably does better but not in the worst case (unless we keep it balanced) CSE 373 Autumn 2016

Lazy Deletion

$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 0}$	$\mathbf{4 1}$	$\mathbf{4 2}$	$\mathbf{4 4}$	$\mathbf{4 5}$	$\mathbf{5 0}$
\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark

A general technique for making delete as fast as find

- Instead of actually removing the item just mark it deleted

Plusses:

- Simpler
- Can do removals later in batches
- If re-added soon thereafter, just unmark the deletion

Minuses

- Extra space for the "is-it-deleted" flag
- Data structure full of deleted nodes wastes space
- May complicate other operations

Better dictionary data structures

There are many good data structures for (large) dictionaries

1. Binary trees
2. AVL trees

- Binary search trees with guaranteed balancing

3. B-Trees

- Also always balanced, but different and shallower
- B-Trees are not the same as Binary Trees
- B-Trees generally have large branching factor

4. Hash Tables

- Not tree-like at all

Skipping: Other balanced trees (e.g., red-black, splay)

Kinds of trees

Certain terms define trees with specific structure

- Binary tree: Each node has at most 2 children (branching factor 2)
- n-ary tree: Each node has at most n children (branching factor n)
- Perfect tree: Each row completely full
- Complete tree: Each row completely full except maybe the bottom row, which is filled from left to right

What is the height of a perfect binary tree with n nodes? $\left\lfloor\log _{2} n\right\rfloor$ A complete binary tree?

Binary Trees

- Binary tree: Each node has at most 2 children (branching factor 2)
- Binary tree is
- A root (with data)
- A left subtree that's a binary tree
- A right subtree that's a binary tree
- These subtrees may be empty.
- Representation:

For a dictionary, data will include a
key and a value

CSE 373 Autumn 2016

Binary Tree Representation

Binary Trees: Some Numbers

Recall: height of a tree = longest path from root to leaf (count edges)

For binary tree of height h :

- max \# of leaves: 2^{h}
- max \# of nodes: $2^{(h+1)}-1$
- min \# of leaves: 1
- min \# of nodes: $\boldsymbol{h}+\boldsymbol{1}$

For n nodes, we cannot do better than $O(\log n)$ height and we want to avoid $O(n)$ height

Calculating height

What is the height of a tree with root root? int treeHeight (Node root) \{
???
\}

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


A = current node$=$ processing (on the call stack)

A = completed node $\checkmark=$ element has been processed

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
```

\}

void inOrderTraversal (Node t) {
void inOrderTraversal (Node t) {
if(t != null) {
if(t != null) {
inOrderTraversal(t.left);
inOrderTraversal(t.left);
process(t.element);
process(t.element);
inOrderTraversal(t.right);
inOrderTraversal(t.right);
}
}
}
}

More on traversals

void inOrderTraversal (Node t) \{
if(t != null) \{
inOrderTraversal(t.left);
process (t.element) ;
inOrderTraversal(t.right);
\}
\}

A = current node A = processing (on the call stack)
A = completed node $\checkmark=$ element has been processed

More on traversals

```
void inOrderTraversal (Node t) {
    if(t != null) {
        inOrderTraversal(t.left);
        process(t.element);
        inOrderTraversal(t.right);
    }
}
```


More on traversals

void inOrderTraversal (Node t) \{
if(t != null) \{
inOrderTraversal (t.left) ; process(t.element);
inOrderTraversal(t.right);
\}
\}

A = current node A = processing (on the call stack)
A $=$ completed node $\checkmark=$ element has been processed

Preorder Exercise

