
10/6/2016

1

CSE373: Data Structures and Algorithms

More Asymptotic Analysis
(Examples)

Steve Tanimoto

Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Give Asymptotic Analyses for the Following

2CSE 373 Autumn 2016

1. g(n) = 45 n log n + 2n2 + 65

2. g(n) = 1000000 n + 0.01  2n

3. int sum = 0;
for (int i = 0; i < n; i=i+2){

sum = sum + i;
}

4. int sum = 0;
for (int i = n; i > 1; i=i/2){

sum = sum + i;
}

Next Compare Two Recursive Algorithms

• Towers of Hanoi Puzzles (including the Towers of Brahma
puzzle where n=64).

• Mergesort (for sorting an array of n numbers or other
comparable keys such as strings)

3CSE 373 Autumn 2016

The Time to Solve the Towers of Brahma
Puzzle

• The Towers of Brahma problem is a 64-disk
Towers of Hanoi puzzle.

• All disks start on the Left peg.

• Goal: move all disks to the Right peg.

• Constraints:

– move 1 disk at a time;

– only the topmost disk can be moved
from a pile.

– a disk may never be placed on top of
one smaller than it.

• Time: 1 second per move (according to
legend).

4CSE 373 Autumn 2016

The n-Disk Towers of Hanoi Puzzle

A good solution approach:

• If n=1, move the (only) disk from the start
peg to the goal peg.

• Otherwise,

– first move the top n-1 disks to the non-
goal (and non-start) peg (recursively);

– then move the bottom peg to the goal
peg;

– finally, move the n-1 disks from the non-
goal peg to the goal peg (recursively).

5CSE 373 Autumn 2016

La Tour d'Hanoi was originally invented by
French mathematician Eduardo Lucas in 1883.
http://www.puzzlemuseum.com/month/picm07/2007-03_hanoi.htm

6CSE 373 Autumn 2016

http://algorithms.tutorialhorizon.com/towers-of-hanoi/

10/6/2016

2

Time for Solving Towers of Hanoi
• Let the time to move one disk be 1 unit (e.g., one second).

• T(n) represents the (minimum) time (= number of moves)
required to solve an n-disk Towers of Hanoi puzzle.

• If there is only 1 disk, 1 unit of time is required:

T(1) = 1.

• If there are n>1 disks, the time required is:

T(n) = T(n-1) + T(1) + T(n-1)

= 2 T(n-1) + 1

= 2 (2 T(n - 2) +1) + 1 (if n > 2)

= 4 T(n - 2) + 3

= 8 T(n - 3) + 7 (if n > 3)

...

= 2n-1 T(1) + (2n-1 - 1)

= 2n-1 + 2n-1 - 1 = 2n - 1  (2n)
7CSE 373 Autumn 2016

The Tower of Brahma Puzzle Takes

264 - 1 seconds

= 18,446,744,073,709,551,615 seconds

 585 billion years

 about 127 times the current age of the sun.

After the monks have finished moving the disks,
then the world will end, according to the
Brahmin legend.

8CSE 373 Autumn 2016

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Example: Analyzing Mergesort

Mergesort is a recursive algorithm for sorting an
array of number of other comparable keys
such as strings.

It uses an algorithm paradigm known as "divide
and conquer" in which the problem is
conceptually split up into parts, and each part
is solved separately, and then the results
from the parts are combined into an overall
solution.

9CSE 373 Autumn 2016

Merge sort

• To sort array from position lo to position hi:

– If range is 1 element long, it is already sorted! (Base case)

– Else:
• Sort from lo to (hi+lo)/2

• Sort from (hi+lo)/2 to hi

• Merge the two halves together

• Merging takes two sorted parts and sorts everything

– O(n) but requires auxiliary space…

Autumn 2016 10CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

Example, focus on merging

Start with:

Autumn 2016 11CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic )
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Autumn 2016 12CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic )
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1

(After merge,
copy back to
original array)

10/6/2016

3

Example, focus on merging

Start with:

Autumn 2016 13CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic )
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Autumn 2016 14CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic )
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Autumn 2016 15CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic )
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Autumn 2016 16CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic )
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Autumn 2016 17CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic )
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Autumn 2016 18CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic )
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8

(After merge,
copy back to
original array)

10/6/2016

4

Example, focus on merging

Start with:

Autumn 2016 19CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic )
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Autumn 2016 20CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

After recursion:

(not magic )
2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers”

and 1 more array

1 2 3 4 5 6 8 9

(After merge,
copy back to
original array)

1 2 3 4 5 6 8 9

Example, Showing Recursion

Autumn 2016 21CSE 373: Data Structures & Algorithms

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

Mergesort Analysis
(One of the recurrence classics)

For simplicity let constants be 1 (no effect on asymptotic answer)

T(1) = 1 So total is 2kT(n/2k) + kn where

T(n) = 2T(n/2) + n n/2k = 1, i.e., log n = k

= 2(2T(n/4) + n/2) + n That is, 2log n T(1) + n log n

= 4T(n/4) + 2n = n + n log n

= 4(2T(n/8) + n/4) + 2n  (n log n)

= 8T(n/8) + 3n

….

= 2kT(n/2k) + kn

Autumn 2016 22CSE 373: Data Structures & Algorithms

Summary

The Towers of Hanoi recurrence leads to (2n) time behavior.

The Mergesort recurrence leads to (n log n) time behavior.

Although both algorithms use the divide-and-conquer approach,

and two-way recursion, when we solve the recurrences, we find

one to be much, much faster than the other.

23CSE 373 Autumn 2016

