

Comparing Function Growth (e.g., for Running Times)

- For a processor capable of one million instructions per second

	n	$n \log _{2} n$	n^{2}	n^{3}	1.5^{n}	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{255} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Efficiency

- What does it mean for an algorithm to be efficient?
- We care about time (and sometimes space)
- Is the following a good definition?
- "An algorithm is efficient if, when implemented, it runs quickly on real input instances"

Gauging Performance

- Uh, why not just run the program and time it?
- Too much variability, not reliable or portable:
- Hardware: processor(s), memory, etc.
- Software: OS, Java version, libraries, drivers
- Other programs running
- Implementation dependent
- Choice of input
- Testing (inexhaustive) may miss worst-case input
- Timing does not explain relative timing among inputs (what happens when n doubles in size)
- Often want to evaluate an algorithm, not an implementation - Even before creating the implementation ("coding it up")

Comparing Algorithms

When is one algorithm (not implementation) better than another?

- Various possible answers (clarity, security, ...)
- But a big one is performance: for sufficiently large inputs, runs in less time (our focus) or less space

Large inputs - because probably any algorithm is "plenty good" for small inputs (if n is 5 , probably anything is fast)

Answer will be independent of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

Analyzing Code ("worst case")

Basic operations take "some amount of" constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.
(This is an approximation of reality but practical.)

Control Flow	Time required
Consecutive statements	Sum of times of statements Conditionals
Sum of times of test and slower branch	
Loops	Number of iterations \times time of body
Calls	Time of called function's body
Recursion	(Solve a recurrence equation)
	CSE 373 Autumn 2016

Example

Find an integer in a sorted array
// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k) \{ ???
\}

Binary Search

Find an integer in a sorted array

- Can also be done non-recursively
// requires array is sorted
l/ returns whether k is in array
return help(arr, $k, 0, a r r . l e n g t h) ;$
boolean help(int[]arr, int k, int lo, int hi) \{ int mid $=(h i+l o) / 2 ; / /$ i.e., lo+(hi-lo)/2 if (lo==hi)
$\begin{array}{ll}\text { if (lo==hi) } & \text { return false; } \\ \text { if (arr [mid]==k) } & \text { return true; }\end{array}$
if(arr[mid]<k) return help(arr,k,mid+1,hi); else return help(arr,k,lo,mid);
\} CSE 373 Autumn $2016 \quad 12$

Binary Search

Best case: about 8 steps: $O(1)$
Worst case: $T(n)=10+T(n / 2)$ where n is hi-lo

- $T(n) \in O(\log n)$ where n is array. length
- Solve recurrence equation to know that...
// requires array is sorted
boolean find (int[]arr, int k)
return help(arr, $k, 0, a r r$.length) ;
\}
lean help(int[]arr, int k, int lo, int hi) \{
int mid $=(\mathrm{hi}+10) / 2$;
if(lo==hi) return false;
if (arr[mid]==k) return true;
if (arr[mid]<k) return help(arr,k,mid+1,hi) ; else return help(arr,k,lo,mid);
\}

Ignoring Constant Factors

- So binary search's runtime is in $O(\log n)$ and linear's is in $O(n)$
- But which is faster?
- Could depend on constant factors
- How many assignments, additions, etc. for each n

$$
\text { - E.g. } T(n)=5,000,000 n \quad \text { vs. } T(n)=5 n^{2}
$$

- And could depend on size of n
- E.g. $T(n)=5,000,000+\log n$ vs. $T(n)=10+n$
- But there exists some n_{0} such that for all $n>n_{0}$ binary search wins
- Let's play with a couple plots to get some intuition...

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

$$
T(n)=10+T(n / 2) \quad T(1)=10
$$

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

- $\quad T(n)=10+10+T(n / 4)$

$$
\begin{aligned}
& =10+10+10+T(n / 8) \\
& =\ldots \\
& =10 \mathrm{k}+T\left(n /\left(2^{\mathrm{k}}\right)\right)
\end{aligned}
$$

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

- $n /\left(2^{\mathrm{k}}\right)=1$ implies $n=2^{\mathrm{k}}$ implies $\mathrm{k}=\log _{2} n$
- So $T(n)=10 \log _{2} n+8$ (get to base case and do it)
- \quad So $T(n)$ is in $O(\log n)$

Another Example: sum array

Two "obviously" linear algorithms: $T(n)=c+T(n-1)$

Iterative:	```int sum(int[] arr){ int ans = 0; for(int i=0; i<arr.length; ++i) ans += arr[i]; return ans; }```
Recursive: - Recurrence is $k+k+\ldots+k$ for n times	```int sum(int[] arr) { return help (arr,0); } int help(int[]arr,int i) { if(i==arr.length) return 0; return arr[i] + help(arr,i+1); }```
	CSE 373 Autumn 201618

```
What About a Recursive Version?
```

```
    int sum(int[] arr){
```

 int sum(int[] arr){
 return help(arr,0,arr.length);
 return help(arr,0,arr.length);
 int help(int[] arr, int lo, int hi)
int help(int[] arr, int lo, int hi)
if(lo==hi) return 0;
if(lo==hi) return 0;
if(lo==hi-1) return arr[lo];
if(lo==hi-1) return arr[lo];
int mid = (hi+lo)/2;
int mid = (hi+lo)/2;
return help(arr,lo,mid) + help(arr,mid,hi);
return help(arr,lo,mid) + help(arr,mid,hi);
}

```
    }
```

Recurrence is $T(n)=1+2 T(n / 2) ; T(1)=1$
$1+2+4+8+\ldots$ for $\log n$ times
$2^{(\log n)}-1$ which is proportional to n (definition of logarithm)

Easier explanation: it adds each number once while doing little else
"Obvious": We can't do better than $O(n)$: we have to read whole array

Common Recurrences

Should know how to solve recurrences but also recognize some really common ones:

$T(n)$	$=c+T(n-1)$		linear
$T(n)$	$=c+2 T(n / 2)$		linear
$T(n)$	$=c+T(n / 2)$		logarithmic: $O(\log n)$
$T(n)$	$=c+2 T(n-1)$		exponential
$T(n)$	$=c n+T(n-1)$		quadratic
$T(n)$	$=c n+T(n / 2)$		linear
$T(n)$	$=c n+2 T(n / 2)$		$O(n \log n)$

Note big-O can also use more than one variable

- Example: can sum all elements of an n-by- m matrix in $O(n m)$

Big-O Relates Functions

We use O on a function $f(n)$ (for example n^{2}) to mean the set of functions with asymptotic behavior "less than or equal to" $f(n)$

For example, $\left(3 n^{2}+17\right)$ is in $O\left(n^{2}\right)$
Confusingly, some people also say/write:
$-\left(3 n^{2}+17\right)$ is $O\left(n^{2}\right)$
$-\left(3 n^{2}+17\right)=O\left(n^{2}\right)$
But we should never say $O\left(n^{2}\right)=\left(3 n^{2}+17\right)$

Parallelism Teaser

- But suppose we could do two recursive calls at the same time
- Like having a friend do half the work for you!

int sum(int[]arr) \{

return help(arr, 0,arr.length);
int help(int[]arr, int lo, int hi) \{ if (lo==hi) return 0; if(lo==hi-1) return arr[lo];

$\}$

- If you have as many "friends of friends" as needed the recurrence is now $T(n)=c+1 T(n / 2)$
- $O(\log n)$: same recurrence as for find

Asymptotic Notation

About to show formal definition, which amounts to saying:

1. Eliminate low-order terms
2. Eliminate coefficients

Examples:
$-4 n+5$
$-0.5 n \log n+2 n+7$
$-n^{3}+2^{n}+3 n$

- $n \log \left(10 n^{2}\right)$

Big-O, Formally

Definition:
$f(n)$ is in $O(g(n))$ if there exist constants c and n_{0} such that $\mathrm{f}(n) \leq c \mathrm{~g}(n)$ for all $n \geq n_{0}$

- To show $f(n)$ is in $O(g(n))$, pick a c large enough to "cover the constant factors" and n_{0} large enough to "cover the lower-order terms"
- Example: Let $\mathrm{f}(n)=3 n^{2}+17$ and $\mathrm{g}(n)=n^{2}$ $c=5$ and $n_{0}=10$ will work.
- This is "less than or equal to"
- So $3 n^{2}+17$ is also in $O\left(n^{5}\right)$ and in $O\left(2^{n}\right)$ etc.

More Examples, Using Formal Definition

- Let $\mathrm{f}(n)=1000 n$ and $\mathrm{g}(n)=n^{2}$
- A valid proof is to find valid c and n_{0}
- The "cross-over point" is $n=1000$
- So we can choose $n_{0}=1000$ and $c=1$
- Many other possible choices, e.g., larger n_{0} and/or c

Definition:

$\mathrm{f}(n)$ is in $\mathrm{O}(\mathrm{g}(n))$ if there exist constants c and n_{0} such that $\mathrm{f}(n) \leq c \mathrm{~g}(n)$ for all $n \geq n_{0}$

What's with the c ?

- The constant multiplier c is what allows functions that differ only in their largest coefficient to have the same asymptotic complexity
- Example: $\mathrm{f}(n)=7 n+5$ and $\mathrm{g}(n)=n$
- For any choice of n_{0}, need a $c>7$ (or more) to show $f(n)$ is in $\mathrm{O}(\mathrm{g}(n)$)

Definition:
$\mathrm{f}(n)$ is in $\mathrm{O}(\mathrm{g}(n))$ if there exist constants c and n_{0} such that $\mathrm{f}(n) \leq \mathrm{g}(n)$ for all $n \geq n_{0}$

What You Can Drop

- Eliminate coefficients because we don't have units anyway
- $3 n^{2}$ versus $5 n^{2}$ doesn't mean anything when we have not specified the cost of constant-time operations (can re-scale)
- Eliminate low-order terms because they have vanishingly small impact as n grows
- Do NOT ignore constants that are not multipliers
- n^{3} is not in $O\left(n^{2}\right)$
- 3^{n} is not in $O\left(2^{n}\right)$
(This all follows from the formal definition)

More Examples, Using Formal Definition

- Let $\mathrm{f}(n)=n^{4}$ and $\mathrm{g}(n)=2^{n}$
- A valid proof is to find valid c and n_{0}
- We can choose $n_{0}=20$ and $c=1$

Definition:

$\mathrm{f}(n)$ is in $\mathrm{O}(\mathrm{g}(n))$ if there exist constants c and n_{0} such that $\mathrm{f}(n) \leq c \mathrm{~g}(n)$ for all $n \geq n_{0}$

Aesthetics of a Big-O Demonstrations

- Sometimes, $\mathrm{f}(n)$ is clearly "dominated" by $\mathrm{g}(n)$.
- That happens when f is in $O(\mathrm{~g})$, but g is not in $O(\mathrm{f})$
- For example $2 n$ is in $O\left(n^{3}\right)$ but n^{3} is not in $O(2 n)$.
- Then to show $\mathrm{f}(n)$ is in $O(\mathrm{~g}(n))$, it is good form to use $c=1$ and the smallest n_{0} that works with it, or the smallest integer value of n_{0} that works with it.
- We show $2 n$ is in $O\left(n^{3}\right)$ by taking $c=1$ and $n_{0}=2^{1 / 2}$ or $n_{0}=2$.

Definition:
$\mathrm{f}(n)$ is in $\mathrm{O}(\mathrm{g}(n))$ if there exist constants

$$
c \text { and } n_{0} \text { such that } \mathrm{f}(n) \leq c \mathrm{~g}(n) \text { for all } n \geq n_{0}
$$

$O(1)$	constant
$O(\log n)$	logarithmic
$O(n)$	linear
$O(n \log n)$	" $n \log n "$
$O\left(n^{2}\right)$	quadratic
$O\left(n^{3}\right)$	cubic
$O\left(n^{k}\right)$	polynomial (where is k is any constant)
$O\left(k^{n}\right)$	exponential (where k is any constant $>1)$

"exponential" does not mean "grows really fast", it means "grows at rate proportional to k^{n} for some $k>1$ "

- A savings account accrues interest exponentially ($k=1.01$?)
- If you don't know k, you probably don't know its exponential

More Asymptotic Notation

- Upper bound: $\boldsymbol{O}(g(n))$ is the set of all functions asymptotically less than or equal to $f(g)$
- $f(n)$ is in $O(g(n))$ if there exist constants c and n_{0} such that $\mathrm{f}(n) \leq c \mathrm{~g}(n)$ for all $n \geq n_{0}$
- Lower bound: $\Omega(g(n))$ is the set of all functions asymptotically greater than or equal to $\mathrm{g}(n)$
- $f(n)$ is in $\Omega(g(n))$ if there exist constants c and n_{0} such that $\mathrm{f}(n) \geq c \mathrm{~g}(n)$ for all $n \geq n_{0}$
- Tight bound: $\Theta(g(n))$ is the set of all functions asymptotically equal to $\mathrm{g}(n)$
- Intersection of $O(\mathrm{~g}(n))$ and $\Omega(\mathrm{g}(n))$ (use different c values)

Correct Terms, in Theory

A common error is to say $O(f(n))$ when you mean $\Theta(f(n)$)

- Since a linear algorithm is also $O\left(n^{5}\right)$, it's tempting to say "this algorithm is exactly $O(n)^{\prime \prime}$
- That doesn't mean anything, say it is $\Theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": intersection of "big-Oh" and not "big-Theta"
- For all c, there exists an n_{0} such that... \leq
- Example: array sum is $o\left(n^{2}\right)$ but not $o(n)$
- "strictly greater than"
- "little-omega": intersection of "big-Omega" and not "big-Theta" - For all c, there exists an n_{0} such that... \geq - Example: array sum is $\omega(\log n)$ but not $\omega(n)$
- "strictly less than"

Other Things to Analyze

- Space instead of time
- Remember we can often use space to gain time.
- Average case
- Sometimes only if you assume something about the probability distribution of inputs
- Sometimes uses randomization in the algorithm - Will see an example with sorting
- Sometimes an amortized guarantee
- Average time over any sequence of operations
- Will discuss in a later lecture

Usually Asymptotic Analysis is Valuable

- Asymptotic complexity focuses on behavior for large n and is independent of any computer / coding trick.
- But you can "abuse" it to be misled about trade-offs.
- Example: $n^{1 / 10}$ vs. $\log n$
- Asymptotically $n^{1 / 10}$ grows more quickly.
- But the "cross-over" point is around 5 * 10^{17}
- So if you have input size less than 2^{58}, prefer $n^{1 / 10}$
- For small n, an algorithm with worse asymptotic complexity might be faster.
- Here the constant factors can matter, if you care about performance for small n.

Timing vs. Big-O Summary

- Big-O notation is an essential part of computer science's mathematical foundation
- Examine the algorithm itself, not the implementation.
- Reason about (even prove) performance as a function of n.
- Timing also has its place
- Compare implementations.
- Focus on data sets you care about (versus worst case).
- Determine what the constant factors "really are".

