

Today

- Review of math essential to algorithm analysis
- Motivating example: binary vs linear search
- Logarithms and exponents
- Floor and ceiling functions
- Numbers of orderings
- Numbers of combinations
- Arithmetic series
- Geometric series
- Squared harmonic series
- Begin algorithm analysis


## Powers of 2

- Most modern computers use hardware that implements base-2 arithmetic.
- Any fixed-precision integer is implemented as a sequence of bits (often of length 8, 16, or 32). The value is given by

$$
\sum_{i=0}^{i=n-1} a_{i} 2^{i}
$$

Here n is the number of bits. The least significant bit is bit 0 .

- Bit 0 has value 1 ; bit 1 has value 2 ; bit 2 has value 4 ; ...; bit $n-1$ has value $2^{n-1}$
- With $n$ bits, there are $2^{n}$ possible values. Call this number $p$. Then $n=\log _{2} p$


## Logarithms and Exponents (cont.)

- A logarithm tells how many of one number (the base of the logarithm) to multiply to get another number. It asks "what exponent produced this?" e.g. $\log _{2} 8=3$
(2 makes 8 when used 3 times in a multiplication)
- The exponent of after a number says how many times to use the number in a multiplication.
e.g. $2^{3}=2 \times 2 \times 2=8$
(2 is used 3 times in a multiplication to get 8)


## Logarithms and Exponents

- Definition: $\log _{2} x=y$ if and only if $x=2^{y}$
$-\log _{2} 8=3$, because $8=2^{3}$.
$-\log _{2} 65536=16$ because $65536=2^{16}$.
(2 used 3 times in a multiplication to get 8 )


## Logarithms and Exponents

- Since so much is binary in CSE, log almost always means $\log _{2}$
- $\log _{2} n$ tells you how many bits needed to identify one element from a set of $n$ elements.
- So, $\log _{2} 1,000,000=$ "a little under 20 "
- Logarithmic functions and exponential functions are inverses of one another. Just as exponential functions grow very quickly, logarithmic functions grow very slowly.


## Logarithms and Exponents



CSE 373 Winter 2016

Logarithms and Exponents


## Properties of logarithms

- $\log (x \cdot y)=\log x+\log y$
- $\log \left(n^{k}\right)=k \log n$
- $\log (x / y)=\log x-\log y$
- $\log (\log x)$ is written $\log _{y} \log x$
- Grows as slowly as $2^{2}$ grows quickly
- $(\log x)(\log x)$ is written $\log ^{2} x$
- It is greater than $\log x$ for all $x>2$
- It is not the same as $\log \log x$

CSE 373 Winter 2016
12

## Log base often doesn't matter much!

"Any base $B$ logarithm is equivalent to a base 2 logarithm within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log _{2} x=\mathrm{c} \log _{10} x$ where $\mathrm{c} \approx 3.22$
- In general we can convert log bases via a constant multiplier
- To convert from base $A$ to base $B$ :

$$
\log _{B} x=\left(\log _{A} x\right) /\left(\log _{A} B\right)
$$

## A Combinatorial Problem

Airplane boarding is not always smooth. Some folks want to board first; others don't care. Some need the aisles clear, others don't.
After some complaints at Amazing Airlines, one of the tech folks decides to implement an algorithm that will generate all possible boarding orders and evaluate each one in terms of how fast and how happy the passengers will be.

## A Combinatorial Problem (cont.)

It will take 1 second to evaluate each possible ordering. Since the airline doesn't know until 15 min . before boarding who is actually in the gate area, they can't run the program until 15 min . before boarding.
Will this method find the best ordering in time? (For what values of $n$ is it feasible?)

## Permutations

- The number of possible orderings of $n$ distinct items.
- $E x: n=3$. $\{(a, b, c),(a, c, b),(b, a, c),(b, c, a),(c, a, b),(c, b, a)\}$
- The number of permutations of $n$ items is $n$ factorial ( $n!$ ).

| $n$ | $n!$ | $n$ | $n!$ |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 12 | $479,001,600$ |
| 2 | 2 | 13 | $6,227,020,800$ |
| 3 | 6 |  |  |
| 4 | 24 |  |  |
| 5 | 120 |  |  |
| 6 | 720 |  |  |
| 7 | 5040 |  |  |

CSE 373 Winter 2016

## A Combinatorial Problem (cont.)

It will take 1 second to evaluate each possible ordering. Since the airline doesn't know until 15 min . before boarding who is actually in the gate area, they can't run the program until 15 min . before boarding.
Will this method find the best ordering in time? (For what values of $n$ is it feasible?)
Now they optimize the code and get a machine that is much faster and it only takes 1 microsecond to evaluate an ordering. For what values of $n$ is it now feasible?

## Ice Cream Choices -- Combinations

Kombi-Krazy Ice Cream carries 100 flavors of ice cream.
Normally, you get $k$ scoops in a bowl for $k$ dollars, e.g., 3 scoops for $\$ 3.00$.
The special promotion is half off if your $k$ flavors are all different.
Now they want to brag about how many different combinations they offer.
How many distinct combinations are possible for $k=1$ through 5 ?


## Ice Cream Choices -- Combinations (cont.)

k flavor 1 choices, flavor 2 choices... repeats, net.

| 1 | 100 |  | 100 |  |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 100 | 99 | 2 | $9900 / 2=4950$ |
| 3 | 100 | 99 | 98 |  |
| 4 | 100 | 99 | 98 | 97 |
| 5 | 100 | 99 | 989796 |  |

## Combinations

- Choosing $k$ items from $n$ possibilities:
- "n choose $k$ "
- $\mathrm{C}(n, k)=\binom{n}{k}=n!/((n-k)!k!)$
- $n$ things chosen $k$ at a time
- Binomial coefficient $\mathrm{C}_{k}^{n}$
- Example: Number of possible partnerships in CSE 373 assuming 175 students:

$$
C(175,2)=175!/ 173!2!=15225
$$

## Converting Fractions to Integers

Floor and ceiling

- When analyzing algorithms, we will often need to divide an integer by 2 and somehow end up with an integer, or take a log and end up with an integer.
- For example, "I'm thinking of a number between 1 and 100. How many yes-no questions would you have to ask, in the worst case (but playing optimally) to discover my number?"
- Note:
$\log _{2} 100 \approx 6.64385619$
Ans: the smallest integer greater than or equal to $\log _{2} 100$.

$$
=\left\lceil\log _{2} 100\right\rceil=7
$$

$\lfloor X\rfloor$ Floor function: the largest integer $\leq X$

$$
\lfloor 2.7\rfloor=2 \quad\lfloor-2.7\rfloor=-3 \quad\lfloor 2\rfloor=2
$$

$\lceil X\rceil$ Ceiling function: the smallest integer $\geq X$

$$
\lceil 2.3\rceil=3 \quad\lceil-2.3\rceil=-2 \quad\lceil 2\rceil=2
$$

## Facts about floor and ceiling

1. $X-1<\lfloor X\rfloor \leq X$
2. $X \leq\lceil X\rceil<X+1$
3. $\lfloor n / 2\rfloor+\lceil n / 2\rceil=n$ if $n$ is an integer

## Arithmetic Series Formula

- A quick way to evaluate an arithmetic series is to multiply the number of terms by the average of the first and last terms:
- $10+8+6+4=4(10+4) / 2=4(7)=28$.

$$
\sum_{i=0}^{k-1} \mathbf{n}_{i}=k\left(\mathbf{n}_{0}+\mathbf{n}_{k_{i-1}}\right) / 2
$$

- $\mathrm{n}_{i}=\mathrm{n}_{0}+i d$ for some real number $d$.
- Example where $n_{0}=10$ and $d=-2$ :
$10,8,6,4$
An arithmetic series is the sum of an arithmetic sequence.
E.g., $\quad 10+8+6+4=28$.


## Geometric Sequences and Series

- A geometric sequence is one in which we get the next element by multiplying by a constant.
- Example. 1, 3, 9, 27, $81 . \quad$ (a finite example)
$1,3,9,27,81, \ldots$ (an infinite example)
- A geometric series is the sum of a geometric sequence.
- Example. $1+3+9+27+81=121$

$$
1+3+9+27+81+\ldots=\infty
$$

## Zeno's Dichotomy Paradox

- Homer wants to run from A to B.
- Before he goes all the way from $A$ to $B$, he must go half way to $B$.
- But before he can go from the midpoint to $B$, he must go half of the remaining distance, etc.
- So he must complete an infinite number of tasks, which Zeno said is impossible.


## Convergent Geometric Series

- If the (absolute value of the) multiplicative constant is less than 1, the series for an infinite geometric sequence converges (i.e., the sum is finite).
- Example. $1+2+4+8+16+\ldots=\infty$ $1+1 / 2+1 / 4+1 / 8+1 / 16+\ldots=2$
$a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}=\sum_{k=0}^{n-1} a r^{k}=a \frac{1-r^{n}}{1-r}, \quad$ (finite case) $a+a r+a r^{2}+a r^{3}+a r^{4}+\cdots=\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}$, for $|r|<1 . \quad$ (infinite case)


## Simple Example

- Suppose we have an array of 32 elements.
- We have a recursive procedure that processes half of the unprocessed elements and calls itself recursively on the other half.
- Assume that if there is just one unprocessed element, it does process that element and returns.
- How many elements does it process?
- $16+8+4+2+1+1=32$. (It processes all of the elements).
- Note that $\sum_{i=0}^{4} 16 \cdot\left(1 / 2^{\mathrm{i}}\right)=$
$=16 \cdot\left(1-1 / 2^{5}\right) /(1-1 / 2)=32 \cdot(31 / 32)=31$
$\approx 16 /(1-1 / 2)=32$.


## The Harmonic Series

- The (infinite) harmonic series is the following. Its value is infinity (i.e., it diverges).

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots
$$

## The Squared Harmonic Series

- The squared harmonic series is the following. Its value is finite (i.e., it converges).

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots
$$

