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CSE373: Data Structures and Algorithms
Math Review

Steve Tanimoto
Autumn 2016

This lecture material represents the work of multiple instructors at the University of Washington.  
Thank you to all who have contributed!

Today

• Review of math essential to algorithm analysis
– Motivating example: binary vs linear search
– Logarithms and exponents
– Floor and ceiling functions
– Numbers of orderings
– Numbers of combinations
– Arithmetic series
– Geometric series
– Squared harmonic series

• Begin algorithm analysis
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Motivating Example: Binary Search vs
Linear Search
• Given a sorted list of n items, how long does it take (in the worst 

case) to determine whether some value is in the list?

• Binary search:  ??
• Linear search:  ??

• Which is faster?
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Powers of 2
• Most modern computers use hardware that implements base-2 

arithmetic.  
• Any fixed-precision integer is implemented as a sequence of bits 

(often of length 8, 16, or 32).  The value is given by

Here n is the number of bits.  The least significant bit is bit 0.
 Bit 0 has value 1;  bit 1 has value 2; bit 2 has value 4; ...; bit n-1 

has value 2n-1

 With n bits, there are 2n possible values.  Call this number p.
Then n = log2p
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Logarithms and Exponents
• Definition:  log2 x = y if and only if x = 2y

– log2 8 = 3 , because 8 = 23.
– log2 65536 = 16  because 65536 = 216.

• The exponent of after a number says how many times to 
use the number in a multiplication. 
e.g. 23 = 2 × 2 × 2 = 8 

(2 is used 3 times in a multiplication to get 8)
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Logarithms and Exponents (cont.)

• A logarithm tells how many of one number (the 
base of the logarithm) to multiply to get another 
number. It asks "what exponent produced this?”
e.g. log28 = 3

(2 makes 8 when used 3 times in a multiplication)
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Logarithms and Exponents
• Since so much is binary in CSE, log almost always 

means log2
• log2 n tells you how many bits needed to identify one element from a set of n elements. 
• So, log2 1,000,000 = “a little under 20” 

• Logarithmic functions and exponential functions are 
inverses of one another. Just as exponential functions 
grow very quickly, logarithmic functions grow very slowly.
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Logarithms and Exponents

n
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Properties of logarithms
• log(x  y) = log x + log y

• log(nk)= k log n

• log(x/y) = log x – log y

• log(log x) is written log log x
– Grows as slowly as 22 grows quickly

• (log x)(log x) is written log2x
– It is greater than log x for all x > 2
– It is not the same as log log x

y
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Log base often doesn’t matter much!
“Any base B logarithm is equivalent to a base 2 

logarithm within a constant factor”
– And we are about to stop worrying about constant 

factors!
– In particular, log2 x = c log10 x where c  3.22 
– In general we can convert log bases via a 

constant multiplier 
– To convert from base A to base B:

logB x = (logA x) / (logA B)
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A Combinatorial Problem
Airplane boarding is not always smooth.  Some 

folks want to board first; others don't care.   
Some need the aisles clear, others don't.

After some complaints at Amazing Airlines, one of 
the tech folks decides to implement an 
algorithm that will generate all possible 
boarding orders and evaluate each one in 
terms of how fast and how happy the 
passengers will be.  
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A Combinatorial Problem (cont.)
It will take 1 second to evaluate each possible 

ordering.  Since the airline doesn't know until 15 
min. before boarding who is actually in the gate 
area, they can't run the program until 15 min. 
before boarding.

Will this method find the best ordering in time? (For 
what values of n is it feasible?)
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A Combinatorial Problem (cont.)
It will take 1 second to evaluate each possible 

ordering.  Since the airline doesn't know until 15 
min. before boarding who is actually in the gate 
area, they can't run the program until 15 min. 
before boarding.

Will this method find the best ordering in time? (For 
what values of n is it feasible?)

Now they optimize the code and get a machine that 
is much faster and it only takes 1 microsecond to 
evaluate an ordering. For what values of n is it 
now feasible?
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Permutations
• The number of possible orderings of n distinct items.
• Ex: n = 3.  {(a,b,c), (a,c,b), (b,a,c),(b,c,a),(c,a,b),(c,b,a)}
• The number of permutations of n items is n factorial (n!).
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n n!
1 1
2 2
3 6
4 24
5 120
6 720
7 5040

n n!
12 479,001,600
13 6,227,020,800

Ice Cream Choices -- Combinations
Kombi-Krazy Ice Cream carries 100 flavors of 

ice cream.
Normally, you get k scoops in a bowl for k

dollars, e.g., 3 scoops for $3.00.
The special promotion is half off if your k

flavors are all different.
Now they want to brag about how many 

different combinations they offer.
How many distinct combinations are possible 

for k = 1 through 5?
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Ice Cream Choices -- Combinations (cont.)
k flavor 1 choices, flavor 2 choices...  

repeats, net.
1 100 100
2 100  99
3 100  99  98
4 100  99  98  97
5 100  99  98  97  96
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Ice Cream Choices -- Combinations (cont.)
k flavor 1 choices, flavor 2 choices...  

repeats, net.
1 100 100
2 100  99 2    9900/2 = 4950
3 100  99  98
4 100  99  98  97
5 100  99  98  97  96
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Ice Cream Choices -- Combinations (cont.)
k flavor 1 choices, flavor 2 choices...  

repeats, net.
1 100 100
2 100  99 2    9900/2 = 4950
3 100  99  98 6   970200/6 = 161700
4 100  99  98  97 24  94109400/24 = 3921225
5 100  99  98  97  96       120 9034502400/120 = 

75,287,520
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Combinations
• Choosing k items from n possibilities:
• "n choose k"

• C(n, k) =   = n! / ((n-k)! k!)
• n things chosen k at a time
• Binomial coefficient C
• Example: Number of possible partnerships in CSE 373 

assuming 175 students:
C(175, 2) = 175! / 173! 2!  = 15225
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Converting Fractions to Integers
• When analyzing algorithms, we will often need to divide an 

integer by 2 and somehow end up with an integer, or take a log 
and end up with an integer.

• For example, "I'm thinking of a number between 1 and 100. How 
many yes-no questions would you have to ask, in the worst case 
(but playing optimally) to discover my number?"

• Note:
log2100  6.64385619

Ans: the smallest integer greater than or equal to log2100.
=   log2100  = 7
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Floor and ceiling

 X

 X

Floor function: the largest integer < X

Ceiling function: the smallest integer > X

      2232.722.7 

      2222.332.3 
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Facts about floor and ceiling

 
 

    integer an is n ifnn/2n/23.
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Sequences and Series
• A sequence is an ordered collection of numbers, possibly but 

not necessarily repeating numbers.
• Example:   13, 2, 14, 1.   (this is a finite sequence).

0, 2, 4, 6, . . .  (this is an infinite sequence).

• A series is the sum of a sequence
• Example: 13 + 2 + 14 + 1      =  30

0  + 2  + 4  + 6  + ...    =  
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ellipsis

Arithmetic Sequences and Series
• In general for a sequence we have
• n0, n1, n2, ..., ni (finite case)
• or  n0, n1, n2, ..., ni , ...        (infinite case)

• The sequence is an arithmetic sequence if
• ni = n0 + i d for some real number d.
• Example where n0 = 10 and d = 2:

10,  8,  6,  4

An arithmetic series is the sum of an arithmetic sequence.
E.g.,      10 + 8 + 6 + 4  = 28.
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Arithmetic Series Formula
• A quick way to evaluate an arithmetic series is to multiply the 

number of terms by the average of the first and last terms:

• 10 + 8 + 6 + 4  =  4 (10 + 4)/2  = 4 (7) = 28.

i=0
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k-1 ni =        k (n0 + nk-1)/2

Geometric Sequences and Series
• A geometric sequence is one in which we get the next element 

by multiplying by a constant.
• Example.  1, 3, 9, 27, 81.     (a finite example)

1, 3, 9, 27, 81, ...   (an infinite example)

• A geometric series is the sum of a geometric sequence.
• Example.  1 + 3 + 9 + 27 + 81 = 121

1 + 3 + 9 + 27 + 81 + ...     =  
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Zeno’s Dichotomy Paradox
• Homer wants to run from A to B.
• Before he goes all the way from A to B, he must go half way to B.
• But before he can go from the midpoint to B, he must go half of 

the remaining distance, etc.
• So he must complete an infinite number of tasks, which Zeno said 

is impossible.
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Convergent Geometric Series
• If the (absolute value of the) multiplicative constant is less than 

1, the series for an infinite geometric sequence converges (i.e., 
the sum is finite).

• Example. 1 + 2 + 4 + 8 + 16 + ...     =  
1 + 1/2 + 1/4 + 1/8 + 1/16 + ...  = 2

• If the multiplicative constant is r, then we have
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(finite case)

(infinite case)

Simple Example
• Suppose we have an array of 32 elements.
• We have a recursive procedure that processes half of the 

unprocessed elements and calls itself recursively on the other 
half.

• Assume that if there is just one unprocessed element, it does 
process that element and returns.

• How many elements does it process?
• 16 + 8 + 4 + 2 + 1 + 1  = 32.   (It processes all of the elements).

• Note that  i=0 16  (1/2i) =   
=  16  (1 – 1/25)/(1 – ½)  =  32  (31/32) = 31

 16 / (1 - 1/2) = 32.
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The Harmonic Series
• The (infinite) harmonic series is the following.  Its value is infinity 

(i.e., it diverges).
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The Squared Harmonic Series
• The squared harmonic series is the following.  Its value is finite 

(i.e., it converges).
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